

Introduction

SURCA project

 GOAL: identify the conditions that will allow autonomous vehicles (AVs) to perform as well as drivers in normal driving conditions, and above all, better than them in accident-prone situations

First results from the field

- Detailed US accidents involving AV's (>150 cases)
 - Mostly rear-end collisions (freq>50%)
 - AV's not at fault, mostly braking situations within an intersection at low speeds
- Biever (2020):
 - Conflicts may be caused by differences between AVs and human driving behavior.
 - Conservative ADS behavior may violate the expectations of other nearby human road users.

Figure 2. Crash typology distribution.

- Favarò, F. M., Nader, N., Eurich, S. O., Tripp, M., & Varadaraju, N. (2017). Examining accident reports involving autonomous vehicles in California. PLOS ONE, 12(9), e0184952. https://doi.org/10/gbw9sr
- Biever, W., Angell, L., & Seaman, S. (2020). Automated driving system collisions: Early lessons. Human Factors, 62(2), 249-259. https://doi.org/10.1177/0018720819872034
- Wang, S., & Li, Z. (2019). Exploring the mechanism of crashes with automated vehicles using statistical modeling approaches. PLoS ONE, 14(3). https://doi.org/10.1371/journal.pone.0214550
- Petrović, Đ., Mijailović, R., & Pešić, D. (2020). Traffic Accidents with Autonomous Vehicles: Type of Collisions, Manoeuvres and Errors of Conventional Vehicles' Drivers. Transportation Research Procedia, 45, 161-168. https://doi.org/10.1016/j.trpro.2020.03.003
 Sinha, A., Vu, V., Chand, S., Wijayaratna, K., & Dixit, V. (2021). A crash injury model involving autonomous vehicle: Investigating of crash and disengagement reports. Sustainability, 13(14), 7938.

Hypothesis

The stopping manoeuvres carried out by light-vehicle drivers produce different deceleration profiles depending on the reason for stopping (priority scheme or road design)

Variable of interest: Reason for stopping

- Priority scheme (traffic light, stop sign, give-way);
- Road design (roundabout, pedestrian crossing, bus stop)

Covariate

Speed limit (30, 50, 70, 90)

Material

Driving data sets (deceleration)

- Data gathered from 5 previous naturalistic driving studies
- Driving data collected from OBD and GPS
- Drivers were asked to drive several times the same route
- Experiments were designed to observe different behaviors:
 - · General driving style
 - Ecodriving style
 - Intersection management

Map data

- Posted speed limit from public map (OSM)
- Infrastructure: on-site data collection (GPS positions of infra candidates)

Methods

Deceleration profiles extraction process

- Detect stops (Speed<5km/h during at least 3 secs)
- Extract the last 20 secs
- Identify the first instant of deceleration & extract the resulting profile
- Do some cleaning

Context enrichment

- For each deceleration profile:
 - Get the posted speed limit
 - Get the reasons to stop candidates
 - Select the most likely following a selection rule

Pl's

- Deceleration distance
- Deceleration duration
- Maximum deceleration
- Average deceleration
- Initial speed
- Std speed

Results

Deceleration profiles distribution

Speed Limit					
Reason to stop	30 km/h	50 km/h	70 km/h	90 km/h	Total
Bus Stop	3	40	0	0	43
Give Way	1	1	7	<u>91</u>	100
Traffic Light	80	<u>505</u>	12	0	597
NA	139	<u>1875</u>	177	<u>312</u>	2503
Pedestrian Crossing	10	<u>235</u>	17	1	263
Roundabout	0	16	0	0	16
Stop Sign	3	<u>66</u>	0	<u>83</u>	152
Total	236	2738	213	487	3674

Performance indicators according to infrastructure

Max deceleration (ms⁻²)

F(6; 1438) = 31,64; p < 0,001

Max deceleration

- Stop: 50 km/h = 90 km/h (Wang et al. (2005))
- 50 km/ h : Stop > Traffic light = Pedestrian crossing
- 90 km/h : Stop = Give way

Initial speed (km/h)

F(6; 1438) = 96,61; p < 0,001

Initial speed

- Stop: 50 km/h < 90 km/h (Wang et al. (2005))
- 50 km/h : Stop > Traffic light= Pedestrian crossing
- 90 km/h : Stop > Give way

Results: Average curves

stop signs are associated with higher approach speeds, followed by a late but harder deceleration phase, for the both available speed limits

Conclusion

Human driver's deceleration differs according to the reason to stop

Is it the case for AV's?

Recommendations:

- AV's should mimic the human deceleration behaviour according to the reason to stop
- AV's should be better identified
- Human drivers should be familiarized with AV's behaviour specificities

A complete list of recommendations will soon be available from the Surca project.

