

ESSAIS INTER LABORATOIRES

COTITA OUEST - CEELRO - COTITA NORMANDIE CENTRE

Le Mans, le 21 aout 2015

Affaire suivie par : Fabrice RABILLER (02 43 86 77 31)

Campagne d'essais croisés :

Laboratoires organisateurs : CEREMA 22 et SMER 35

Matériaux : BBSG 0/10 C3 30% AE en liaison

Essais : Masse Volumique Apparente

Normes de référence :

NF EN 12697-6 MVA: Éprouvettes bitumineuse

NF EN 12697-7 MVA: Banc gamma

NF P 98-241-1 MVA : Gammadensimètres (et MEI en rétrodiffusion)

MEI MVA: Densimètres électromagnétiques

SOMMAIRE:

	Page:
1 - Présentation	3
1.1 Objectif	
1.2 Contexte	
1.3 Méthode de mesure	
1.4 Matériels	
1.5 Laboratoires présents	
2 - Comparaison des méthodes de correction	
2.1 Exemples	4
2.2 Conclusion	5
3 - Mesures sur les points imposés	
3.1 Résultats	
3.1.1 Résultats bruts	6
3.1.2 Calcul du Offset	7
3.1.3 Résultats corrigés	8
3.2 - Application de la statistique	
3.2.1 Définition	9
3.2.2 Résultats des tests staistiques	
3.2.3 Conclusions	10
3.3 - Interprétation graphique des points imposés	
3.3.1 Carotte / Moyenne des familles d'appareils	11
3.3.2 Banc gamma / Pesée hydro / GPV	12
3.3.3 Carotte / Gammadensimètre	13
3.3.4 Carotte / Pave Tracker	14
3.3.5 Carotte / PQI	16
3.4 Synthèse des résultats	18
4 - Mesures sur la zone « libre »	
4.1 Résultats corrigés	19
4.2 Interprétation graphique	20
4.3 Conclusion	21

5 - Bilan

1 - Présentation

1.1 Objectif:

Comparer les différentes méthodes d'essais permettant de mesurer la masse volumique ponctuelle en place d'un enrobé après compactage. Les appareils non normalisés (densimètres électromagnétiques) se multiplient au détriment des sources radioactives, en contrôle externe ou extérieur. Il est donc intéressant de comparer les résultats des différents appareils sur un même site.

1.2 Contexte:

Chantier de mise à 2 x 2 voies de la RD 177 sur la commune de Guignen. La couche de liaison a été mise en œuvre les 8 et 9 décembre 2014. La couche de roulement n'a pas été réalisée. Les essais comparatifs ont été organisés le 31 mars 2015, à froid sur une chaussée sèche.

La couche contrôlée était un BBSG 0/10 de classe 3 au bitume 35/50 contenant 30% d'agrégats d'enrobés. La MVR de l'enrobé est de 2,471 Tonnes/m³

1.3 Méthode de mesure :

- 1 Une section a été définie avec 13 points fixes imposés pour les laboratoires présents. Conformément à la procédure CEELRO, il a été précisé :
- Les 4 premiers points seront carottés pour définir le coefficient de correction de tous les appareils. Le coefficient de correction sera défini par le laboratoire de mesure.
- Chaque résultat est la moyenne de 4 mesures pour les densimètres électromagnétiques.
- 2 Une section « libre » a été localisée.

Chaque technicien de laboratoire devait effectuer une réception de cette zone selon ses habitudes. Le nombre de points et l'emplacement étaient libres. Le coefficient de correction appliqué sera celui de la première zone.

1.4 Matériels présents :

- 1 GPV MLPC
- 4 Gammadensimètres 3450
- 5 densimètres électromagnétiques Pave Tracker
- 5 densimètres électromagnétiques PQI 1 (1 type 301, 4 type 380)

Les 13 points fixes ont été carottés puis la MVA a été mesurée avec :

- Banc gamma de 50 mm
- Banc gamma de 55 mm
- Pesée Hydrostatique

1.5 Laboratoires Présents :

CEREMA 22 et 76

Départements 14, 27, 35, 44, 50, 53, 56, 72 Laboratoires Privés : LCBTP, HERCYNIA

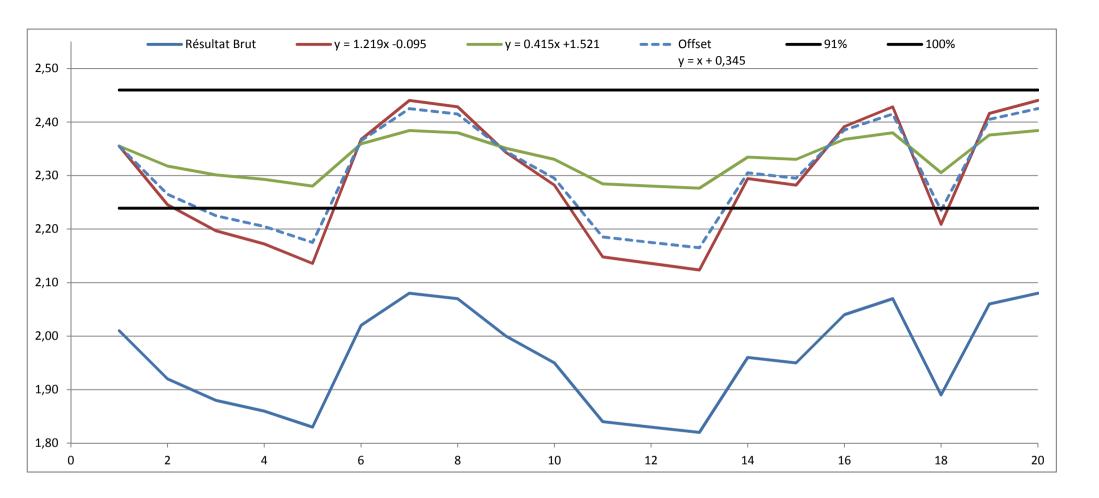
2 - Comparaison des méthodes de correction

Le coefficient de correction est défini à partir d'un minimum de 4 carottages. Conformément à la procédure CEELRO FI 02. Les résultats bruts sont comparés aux pesées hydrostatiques. A partir de ces résultats les laboratoires définissent une correction des valeurs brutes.

Deux types de corretions existent dans les laboratoires :

```
Y = A.X \text{ (Valeur Brute)} + B

Y = X \text{ (Valeur Brute)} + B (correction appelée «Offset»)
```


Les laboratoires ont calculé leur correction selon leur méthode. La diversité des méthodes nous a conduit à comparer les corrections sur une même population.

2.1 Exemples de correction :

Les exemples de formule de correction indiqués ci-dessous proviennent des résultats transmis par les laboratoires participants à la campagne d'essais.

Le Offset a été calculé à partir des mêmes données, d'où le point N° 1 identique pour les 3 méthodes.

	Résultat Brut :	y =	y =	Offset
	X	1,219.X - 0.095	0,415.X + 1.521	y = X + 0.345
1	2,01	2,355	2,355	2,355
2	1,92	2,245	2,318	2,265
3	1,88	2,197	2,301	2,225
4	1,86	2,172	2,293	2,205
5	1,83	2,136	2,280	2,175
6	2,02	2,367	2,359	2,365
7	2,08	2,441	2,384	2,425
8	2,07	2,428	2,380	2,415
9	2,00	2,343	2,351	2,345
10	1,95	2,282	2,330	2,295
11	1,84	2,148	2,285	2,185
12	1,83	2,136	2,280	2,175
13	1,82	2,124	2,276	2,165
14	1,96	2,294	2,334	2,305
15	1,95	2,282	2,330	2,295
16	2,04	2,392	2,368	2,385
17	1,89	2,209	2,305	2,235
18	2,06	2,416	2,376	2,405
19	2,06	2,416	2,376	2,405
20	2,08	2,441	2,384	2,425
M	oyenne :	2,291	2,333	2,303

2.2 Conclusions:

Les formules de type Ax +B amplifient (A>1) ou atténuent (A<1) les variations de densité sur le chantier. La correction de type Offset (x + B) transpose à l'identique les variations de MVA de l'appareil de mesure. Afin de conserver la sensibilité des appareils de mesure, la correction sera obligatoirement de type Offset.

Pour comparer objectivement les matériels de mesure, la correction pour tous les appareils sera calculée à partir de la moyenne des 4 premières carottes (banc gamma) moins la moyenne des 4 premières mesures de l'appareil concerné.

3 - Mesures sur 13 points imposés avec les différents appareils

3.1 Résultats

3.1.1 Résultats Bruts

Banc γ 50 mm
Banc γ 55 mm
Pesées hydro
GPV 3/8
Troxler 1 (+ filler)
Troxler 2 (5cm + filler)
Troxler 2a (5cm)
Troxler 3a
Troxler 3b (5cm)
Troxler 3c (+ filler)
Troxler 3d (5cm + filler)
Troxler 4 (5cm + filler)
Pave Tracker 1
Pave Tracker 2
Pave Tracker 3
Pave Tracker 4
Pave Tracker 5
PQI 1 (380)
PQI 2 (380)
PQI 3 (380)
PQI 4 (380)
PQI 5 (301)

	Valeurs Brutes en Tonnes/m³:]				
1	2	3	4	5	6	7	8	9	10	11	12	13	moyenne:
2,354	2,331	2,347	2,402	2,382	2,345	2,336	2,242	2,336	2,345	2,315	2,364	2,332	2,341
2,340	2,327	2,337	2,396	2,368	2,337	2,334	2,227	2,326	2,338	2,303	2,361	2,317	2,332
2,365	2,336	2,354	2,402	2,385	2,362	2,352	2,261	2,344	2,360	2,337	2,378	2,344	2,352
2,054	2,166	2,218	2,288	2,252	2,215	2,211	2,127	2,148	2,212	2,185	2,248	2,182	2,193
2,380	2,371	2,359	2,426	2,403	2,386	2,389	2,278	2,365	2,378	2,377	2,361	2,387	2,374
2,398	2,352	2,370	2,436	2,362	2,450	2,415	2,334	2,361	2,342	2,377	2,413	2,348	2,381
2,311	2,325	2,321	2,367	2,365	2,346	2,327	2,263	2,328	2,314	2,332	2,352	2,327	2,329
2,338	2,303	2,339	2,373	2,342	2,313	2,341	2,260	2,301	2,322	2,310	2,336	2,273	2,319
2,321	2,328	2,345	2,381	2,372	2,343	2,336	2,319	2,292	2,344	2,321	2,384	2,296	2,337
2,391	2,370	2,397	2,418	2,402	2,358	2,382	2,291	2,345	2,387	2,350	2,389	2,356	2,372
2,442	2,448	2,440	2,477	2,449	2,416	2,417	2,378	2,401	2,447	2,440	2,456	2,446	2,435
2,347	2,349	2,344	2,397	2,365	2,370	2,377	2,254	2,333	2,363	2,344	2,379	2,329	2,350
1,982	1,825	1,998	2,020	2,020	2,037	2,030	1,976	2,005	2,016	2,015	1,991	1,997	1,993
1,997	2,028	2,050	2,046	2,044	2,062	2,038	2,011	2,030	2,021	2,037	2,030	2,026	2,032
1,991	2,010	2,014	2,027	2,011	2,031	2,022	1,963	1,981	2,014	2,014	1,976	1,998	2,004
1,988	2,007	2,021	2,020	2,011	2,034	2,018	1,979	1,996	2,005	2,015	2,012	1,982	2,007
1,992	2,020	2,032	2,030	2,019	2,048	2,037	1,996	2,009	2,015	2,026	2,018	2,007	2,019
2,049	2,026	2,042	2,038	2,041	2,038	2,036	1,977	2,031	2,034	2,027	2,024	2,027	2,030
1,756	1,772	1,783	1,773	1,779	1,791	1,781	1,746	1,756	1,773	1,778	1,764	1,766	1,771
2,330	2,354	2,365	2,364	2,365	2,392	2,240	2,295	2,318	2,353	2,371	2,354	2,307	2,339
2,040	1,985	2,030	2,009	2,029	2,026	2,025	1,984	2,025	2,041	2,031	2,021	2,024	2,021
1,907	1,912	1,913	1,908	1,902	1,922	1,917	1,912	1,914	1,910	1,916	1,907	1,911	1,912
Zone d	le référenc	ce pour le	calage										

3.1.2 Calcul du «Offset»

	Écart	/ Référence	e (banc γ 50	0 mm)	Offset	Offset	Commentaires :
	1	2	3	4	4 essais	13 essais	
Banc γ 55 mm	0,014	0,004	0,010	0,006	0,009	0,009	Offset:
Pesées hydro	-0,011	-0,005	-0,007	0,000	-0,006	-0,011	Le Offset calculé sur 4 carottes (conformément à la procédure CEELRO)
GPV 3/8	0,300	0,165	0,129	0,114	0,136	0,137	est similaire a celui calculé sur les 13 carottes.
Troxler 1 (filler)	-0,026	-0,040	-0,012	-0,024	-0,026	-0,033	Le calcul du Offset sur 4 carottes est donc valide.
Troxler 2 (5cm + filler)	-0,044	-0,021	-0,023	-0,034	-0,031	-0,041	
Troxler 2a (5cm)	0,043	0,006	0,026	0,035	0,028	0,012	Gammadensimètre :
Troxler 3a	0,016	0,028	0,008	0,029	0,020	0,022	La correction est négative lorsque les laboratoires utilisent du filler.
Troxler 3b (5cm)	0,033	0,003	0,002	0,021	0,015	0,004	(Résultat supérieur au carottage). La correction est positive sans
Troxler 3c (+ filler)	-0,037	-0,039	-0,050	-0,016	-0,036	-0,031	le filler.
Troxler 3d (5cm + filler)	-0,088	-0,117	-0,093	-0,075	-0,093	-0,094	La correction est faible, de - 93 à + 28 Kg/m ³ (étendue 121 Kg/m ³)
Troxler 4 (5cm + filler)	0,007	-0,018	0,003	0,005	-0,001	-0,009	Sans filler: $de + 15 à + 28$ (étendue 13 Kg/m^3)
Pave Tracker 1	0,372	0,506	0,349	0,382	0,368	0,348	Avec filler: de - 1 à - 93 Kgm ³ (étendue 92 Kg/m ³)
Pave Tracker 2	0,357	0,303	0,297	0,356	0,328	0,309	
Pave Tracker 3	0,363	0,321	0,333	0,375	0,348	0,337	Pave Tracker :
Pave Tracker 4	0,366	0,324	0,326	0,382	0,350	0,334	La correction est importante, mais assez homogène entre les appareils.
Pave Tracker 5	0,362	0,311	0,315	0,372	0,340	0,322	$De + 328 \text{ à} + 368 \text{ Kg/m}^3 \text{ (étendue } 40 \text{ Kg/m}^3\text{)}$
PQI 1 (380)	0,305	0,305	0,305	0,364	0,320	0,311	
PQI 2 (380)	0,598	0,559	0,564	0,629	0,588	0,570	PQI:
PQI 3 (380)	0,024	-0,023	-0,018	0,038	0,005	0,002	La correction est très hétérogène entre les appareils.
PQI 4 (380)	0,314	0,346	0,317	0,393	0,343	0,320	$De + 5 a + 588 \text{ Kg/m}^3 \text{ (étendue } 583 \text{ Kg/m}^3\text{)}$
PQI 5 (301)	0,447	0,419	0,434	0,494	0,449	0,429	
						Dágultota gim	ilaires entre la bana gamma de référence et l'appareil de magure concerné

Résultats similaires entre le banc gamma de référence et l'appareil de mesure concerné Dans un souci d'homogénéité, la correction est maintenue.

3.1.3 Résultats corrigés

Banc γ 50 mm
Banc γ 55 mm
Pesées hydro
GPV 3/8
Troxler 1 (filler)
Troxler 2 (5cm + filler)
Troxler 2a (5cm)
Troxler 3a
Troxler 3b (5cm)
Troxler 3c (+ filler)
Troxler 3d (5cm + filler)
Troxler 4 (5cm + filler)
Pave Tracker 1
Pave Tracker 2
Pave Tracker 3
Pave Tracker 4
Pave Tracker 5
PQI 1 (380)
PQI 2 (380)
PQI 3 (380)
PQI 4 (380)
PQI 5 (301)

	Valeurs Corrigées en Tonnes/m ³ :]			
1	2	3	4	5	6	7	8	9	10	11	12	13	moyenne:
2,354	2,331	2,347	2,402	2,382	2,345	2,336	2,242	2,336	2,345	2,315	2,364	2,332	2,341
2,349	2,336	2,346	2,405	2,377	2,346	2,343	2,236	2,335	2,347	2,312	2,370	2,326	2,340
2,359	2,330	2,348	2,396	2,379	2,356	2,346	2,255	2,338	2,354	2,331	2,372	2,338	2,347
2,190	2,302	2,354	2,424	2,388	2,351	2,347	2,263	2,284	2,348	2,321	2,384	2,318	2,329
2,355	2,346	2,334	2,401	2,378	2,361	2,364	2,253	2,340	2,353	2,352	2,336	2,362	2,348
2,368	2,322	2,340	2,406	2,332	2,420	2,385	2,304	2,331	2,312	2,347	2,383	2,318	2,351
2,339	2,353	2,349	2,395	2,393	2,374	2,355	2,291	2,356	2,342	2,360	2,380	2,355	2,357
2,358	2,323	2,359	2,393	2,362	2,333	2,361	2,280	2,321	2,342	2,330	2,356	2,293	2,340
2,336	2,343	2,360	2,396	2,387	2,358	2,351	2,334	2,307	2,359	2,336	2,399	2,311	2,352
2,356	2,335	2,362	2,383	2,367	2,323	2,347	2,256	2,310	2,352	2,315	2,354	2,321	2,337
2,349	2,355	2,347	2,384	2,356	2,323	2,324	2,285	2,308	2,354	2,347	2,363	2,353	2,342
2,346	2,348	2,343	2,396	2,364	2,369	2,376	2,253	2,332	2,362	2,343	2,378	2,328	2,349
2,350	2,193	2,366	2,388	2,388	2,405	2,398	2,344	2,373	2,384	2,383	2,359	2,365	2,361
2,325	2,356	2,378	2,374	2,372	2,390	2,366	2,339	2,358	2,349	2,365	2,358	2,354	2,361
2,339	2,358	2,362	2,375	2,359	2,379	2,370	2,311	2,329	2,362	2,362	2,324	2,346	2,352
2,338	2,357	2,371	2,370	2,361	2,384	2,368	2,329	2,346	2,355	2,365	2,362	2,332	2,356
2,332	2,360	2,372	2,370	2,359	2,388	2,377	2,336	2,349	2,355	2,366	2,358	2,347	2,359
2,369	2,346	2,362	2,358	2,361	2,358	2,356	2,297	2,351	2,354	2,347	2,344	2,347	2,350
2,344	2,360	2,371	2,361	2,367	2,379	2,369	2,334	2,344	2,361	2,366	2,352	2,354	2,358
2,335	2,359	2,370	2,369	2,370	2,397	2,245	2,300	2,323	2,358	2,376	2,359	2,312	2,344
2,383	2,328	2,373	2,352	2,372	2,369	2,368	2,327	2,368	2,384	2,374	2,364	2,367	2,363
2,356	2,361	2,362	2,357	2,351	2,371	2,366	2,361	2,363	2,359	2,365	2,356	2,360	2,360

Valeurs abérrantes au test de Grubbs

Valeurs isolées au test de Grubbs

3.2 - Application de la statistique selon NF ISO 5725-2

3.2.1 - Définition :

Valeur aberrante : valeur incohérente au sein d'un ensemble de valeurs

Valeur isolée : valeur douteuse au sein d'un ensemble de valeurs

Test de GRUBBS: Vérification de l'homogénéité des résultats

Le **test simple** permet la recherche d'une observation aberrante. Il consiste à comparer les valeurs extrèmes (la plus grande et la plus petite) à la moyenne de l'ensemble.

Le test simple est réitéré jusqu'à ce qu'aucune valeur aberrante ou isolée ne soit plus détectée.

A chaque itération la population est réduite d'un individu.

Dès lors que le test simple est validé, le test double est appliqué.

Le **test double** permet la recherche de deux observations aberrantes. Il consiste à comparer les deux plus grandes valeurs et les deux plus petites à la moyenne de l'ensemble.

Le test double est réitéré jusqu'à ce qu'aucune valeur aberrante ou isolée ne soit plus détectée.

A chaque itération la population est réduite de deux individus.

3.2.2 - Résultats des tests statistiques :

- Test de Grubbs avec tous les résultats :

Les tests ont été réalisés sans les résultats du banc g 55 mm ni les résultats des pesées hydro. Les résultats des 2 bancs g et des pesées hydro sont parfaitement homogènes. (donc pas d'anomalie) Ceci permet de limiter le nombre de résultats à 20 maximum.

Essai :	n : nombre	Sin	nple	Double		
E55ai .	de résultat	supérieur	inférieur	supérieur	inférieur	
1	n = 20	1,096	3,952	0,899	0,113	
2	n = 20	0,645	3,834	0,953	0,115	
3	n = 20	1,536	2,040	0,788	0,616	
4	n = 20	2,163	1,608	0,642	0,743	
5	n = 20	1,660	2,464	0,737	0,568	
6	n = 20	1,981	1,775	0,657	0,631	
7	n = 20	1,338	3,589	0,846	0,202	
8	n = 20	1,523	1,830	0,766	0,669	
9	n = 20	1,588	2,279	0,743	0,603	
10	n = 20	1,975	2,845	0,544	0,497	
11	n = 20	1,555	1,828	0,774	0,609	
12	n = 20	2,174	2,191	0,627	0,590	
13	n = 20	1,331	2,155	0,807	0,631	

Valeurs critiques de Grubbs :

Nombre de Labo : 20	Simple	Double
Valeurs normales	si G ≤ 2,709	si G ≥ 0,4391
Valeurs isolées	si 2,709 < "G" ≤ 3,001	si 0,3585 ≤ G < 0,4391
Valeurs aberrantes	si "G" > 3,001	si G < 0,3585

- Test après retrait du ou des essais suspect(s) :

Essai :	Matériel écarté n : nombre		Sin	nple	Double		
LSSai . Waterier ecarte	iviateriei ecarte	de résultat	supérieur	inférieur	supérieur	inférieur	
1	GPV 3/8	n = 19	2,354	1,668	0,540	0,741	
2	Pave Tracker 1	n = 19	1,002	2,554	0,882	0,487	
7	PQI 3	n = 19	2,091	2,245	0,621	0,541	
10	Troxler 2	n = 19	2,392	1,293	0,289	0,792	

Essai :	Matériel écarté	n : nombre	Sin	nple	Dou	ıble
Losai .	Materiel ecarte	de résultat	supérieur	inférieur	supérieur	inférieur
10	Pave Tracker 1	n = 17	1,303	1,773	0,759	0,554
	PQI 4					

Valeurs critiques de Grubbs :

Nombre de Labo : 19	Simple	Double		
Valeurs normales	si G ≤ 2,681	si G <u>></u> 0,4214		
Valeurs isolées	si 2,681 < "G" ≤ 2,968	si 0,3398 <u><</u> G < 0,4214		
Valeurs aberrantes	si "G" > 2,968	si G < 0,3398		

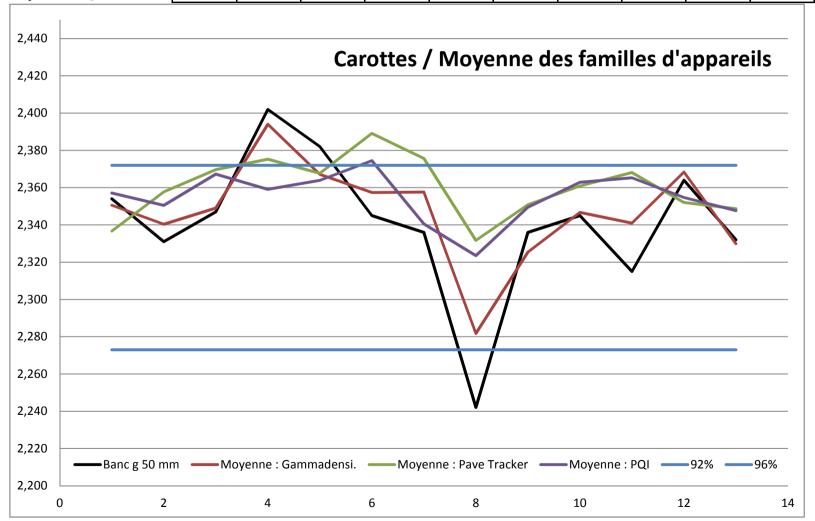
Nombre de Labo : 17	Simple	Double
Valeurs normales	si G ≤ 2,620	si G ≥ 0,3822
Valeurs isolées	si 2,620 < "G" ≤ 2,894	si 0,299 <u><</u> G < 0,3822
Valeurs aberrantes	si "G" > 2,894	si G < 0,299

3.2.3 - Conclusions:

	Matériel(s) con	cerné(s) par:
Essais concernés	Anomalie Grubbs	Anomalie Grubbs
1	GPV 3/8	
2	Pave Tracker 1	
7	PQI 3	
10	Pave Tracker 1 PQI 4	Troxler 2
	Valeur aberrante	Valeur isolée

Les tests appliqués sur les résultats interlaboratoires sont positifs pour les autres laboratoires. Leurs résultats sont cohérants.

3.3 - Interprétation graphique des mesures imposées


3.3.1 Carottes / Moyenne des familles d'appareils

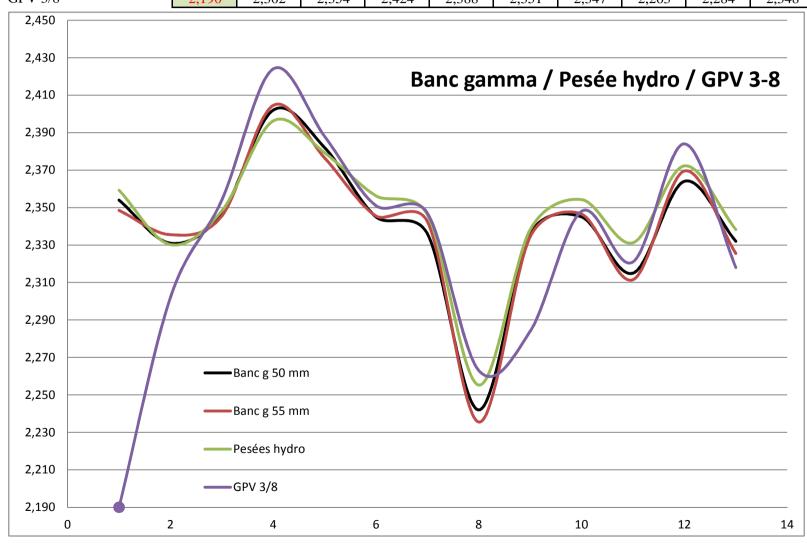
Banc γ 50 mm

Moyenne: Gammadensi. Moyenne: Pave Tracker

Moyenne: PQI

1	2	3	4	5	6	7	8	9	10	11	12	13	Moyenne
2,354	2,331	2,347	2,402	2,382	2,345	2,336	2,242	2,336	2,345	2,315	2,364	2,332	2,341
2,351	2,340	2,349	2,394	2,367	2,357	2,358	2,282	2,325	2,347	2,341	2,368	2,330	2,347
2,337	2,358	2,370	2,375	2,368	2,389	2,376	2,332	2,351	2,361	2,368	2,352	2,349	2,360
2,357	2,351	2,367	2,359	2,364	2,375	2,341	2,324	2,350	2,363	2,365	2,355	2,348	2,355

Commentaire:

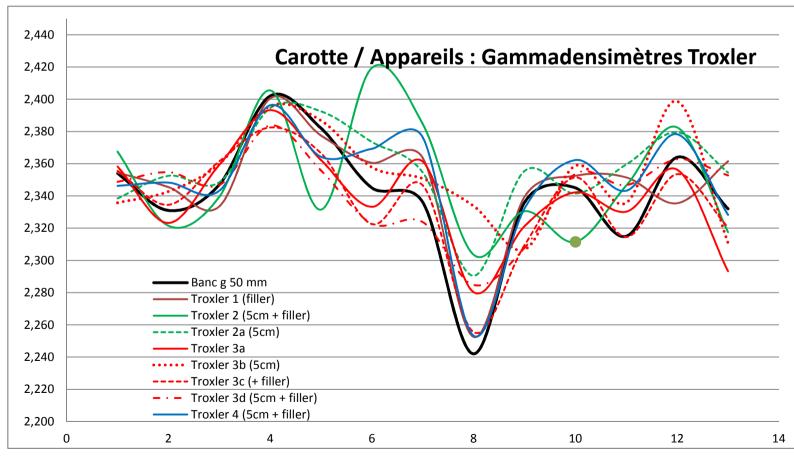

La moyenne des gammadensimètres suit la courbe des carottes. Les Pave Tracker et POI écrasent les amplitudes de densité.

Les moyennes sont similaires (de 2,34 à 2,36)

3.3.2 Banc gamma / Pesée hydro / GPV 3-8

Banc γ 50 mm Banc γ 55 mm Pesées hydro GPV 3/8

1	2	3	4	5	6	7	8	9	10	11	12	13	moyenne:
2,354	2,331	2,347	2,402	2,382	2,345	2,336	2,242	2,336	2,345	2,315	2,364	2,332	2,341
2,349	2,336	2,346	2,405	2,377	2,346	2,343	2,236	2,335	2,347	2,312	2,370	2,326	2,340
2,359	2,330	2,348	2,396	2,379	2,356	2,346	2,255	2,338	2,354	2,331	2,372	2,338	2,347
2,190	2,302	2,354	2,424	2,388	2,351	2,347	2,263	2,284	2,348	2,321	2,384	2,318	2,329

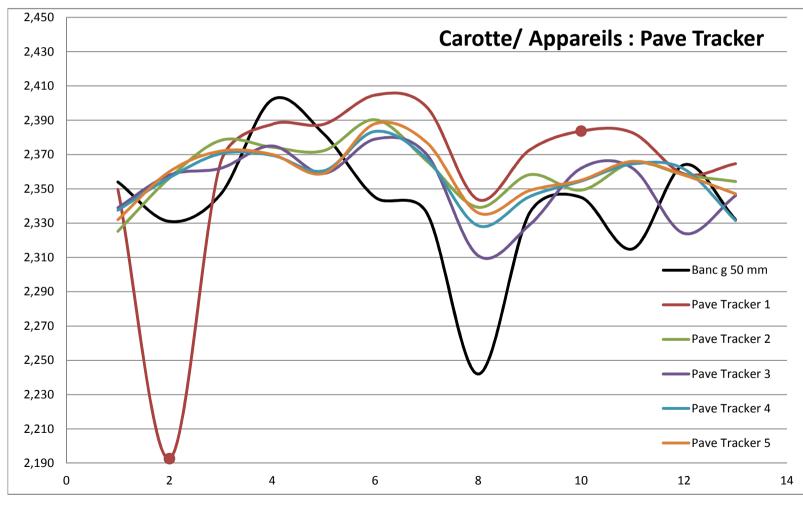


Commentaire:

Mis à part le point N° 1 du GPV, les résultats sont parfaitement similaires.

3.3.3 Carotte / Gammadensimètre

	1	2	3	4	5	6	7	8	9	10	11	12	13	moyenne:
Banc γ 50 mm	2,354	2,331	2,347	2,402	2,382	2,345	2,336	2,242	2,336	2,345	2,315	2,364	2,332	2,341
Troxler 1 (filler)	2,355	2,346	2,334	2,401	2,378	2,361	2,364	2,253	2,340	2,353	2,352	2,336	2,362	2,348
Troxler 2 (5cm + filler)	2,368	2,322	2,340	2,406	2,332	2,420	2,385	2,304	2,331	2,312	2,347	2,383	2,318	2,351
Troxler 2a (5cm)	2,339	2,353	2,349	2,395	2,393	2,374	2,355	2,291	2,356	2,342	2,360	2,380	2,355	2,357
Troxler 3a	2,358	2,323	2,359	2,393	2,362	2,333	2,361	2,280	2,321	2,342	2,330	2,356	2,293	2,340
Troxler 3b (5cm)	2,336	2,343	2,360	2,396	2,387	2,358	2,351	2,334	2,307	2,359	2,336	2,399	2,311	2,352
Troxler 3c (+ filler)	2,356	2,335	2,362	2,383	2,367	2,323	2,347	2,256	2,310	2,352	2,315	2,354	2,321	2,337
Troxler 3d (5cm + filler)	2,349	2,355	2,347	2,384	2,356	2,323	2,324	2,285	2,308	2,354	2,347	2,363	2,353	2,342
Troxler 4 (5cm + filler)	2,346	2,348	2,343	2,396	2,364	2,369	2,376	2,253	2,332	2,362	2,343	2,378	2,328	2,349

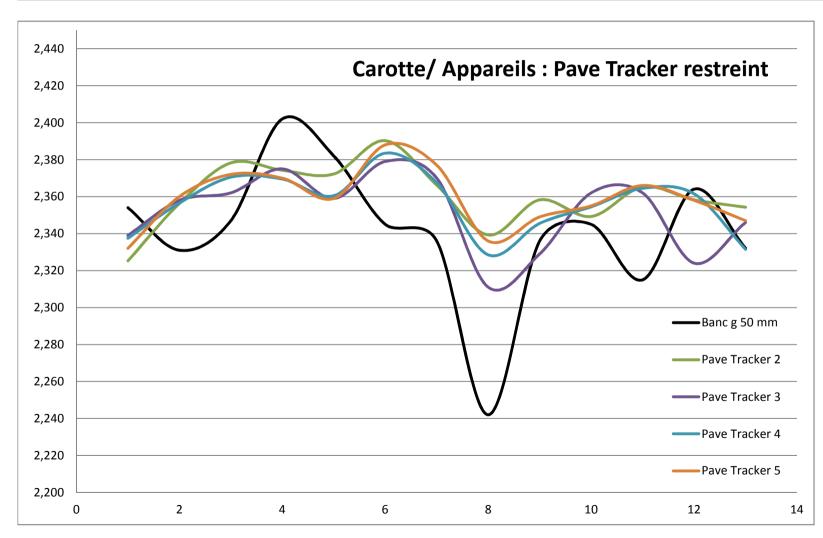

Commentaire:

Les gammadensimètres suivent la tendance des carottes.

Le troxler 2 présente une anomalie sur les points 5 et 6.

3.3.4 Carotte / Pave Tracker

	1	2	3	4	5	6	7	8	9	10	11	12	13	moyenne:
Banc γ 50 mm	2,354	2,331	2,347	2,402	2,382	2,345	2,336	2,242	2,336	2,345	2,315	2,364	2,332	2,341
Pave Tracker 1	2,350	2,193	2,366	2,388	2,388	2,405	2,398	2,344	2,373	2,384	2,383	2,359	2,365	2,361
Pave Tracker 2	2,325	2,356	2,378	2,374	2,372	2,390	2,366	2,339	2,358	2,349	2,365	2,358	2,354	2,361
Pave Tracker 3	2,339	2,358	2,362	2,375	2,359	2,379	2,370	2,311	2,329	2,362	2,362	2,324	2,346	2,352
Pave Tracker 4	2,338	2,357	2,371	2,370	2,361	2,384	2,368	2,329	2,346	2,355	2,365	2,362	2,332	2,356
Pave Tracker 5	2,332	2,360	2,372	2,370	2,359	2,388	2,377	2,336	2,349	2,355	2,366	2,358	2,347	2,359

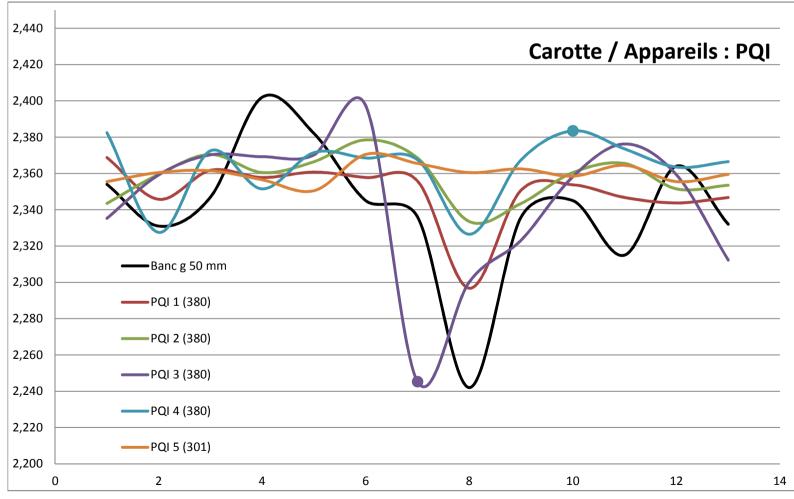


Commentaire:

Les Pave Tracker reflètent la tendance générale en écrasant fortement les extrèmes.

Le Pave tracker N°1 présente des anomalies, essais 2 et 10.

	1	2	3	4	5	6	7	8	9	10	11	12	13	moyenne:
Banc γ 50 mm	2,354	2,331	2,347	2,402	2,382	2,345	2,336	2,242	2,336	2,345	2,315	2,364	2,332	2,341
Pave Tracker 2	2,325	2,356	2,378	2,374	2,372	2,390	2,366	2,339	2,358	2,349	2,365	2,358	2,354	2,361
Pave Tracker 3	2,339	2,358	2,362	2,375	2,359	2,379	2,370	2,311	2,329	2,362	2,362	2,324	2,346	2,352
Pave Tracker 4	2,338	2,357	2,371	2,370	2,361	2,384	2,368	2,329	2,346	2,355	2,365	2,362	2,332	2,356
Pave Tracker 5	2,332	2,360	2,372	2,370	2,359	2,388	2,377	2,336	2,349	2,355	2,366	2,358	2,347	2,359

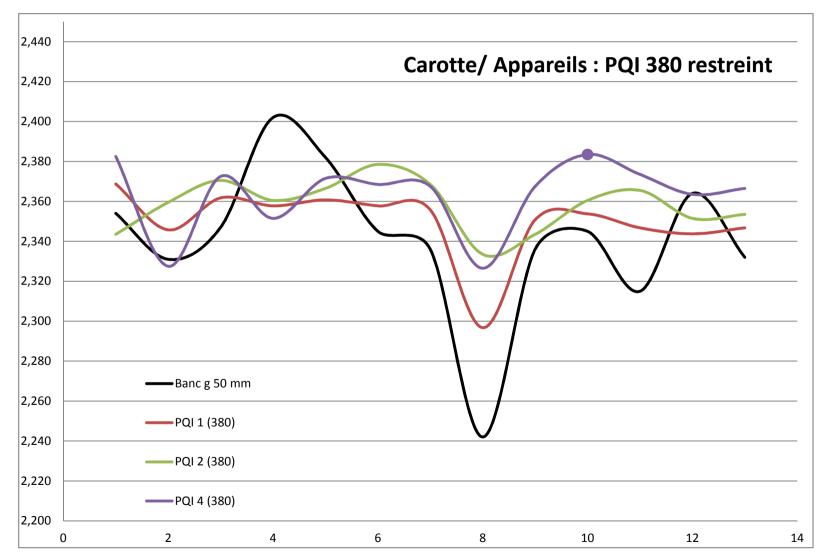

Commentaire:

Les 4 Pave Tracker sont très similaires. Ils écrasent fortement les variations de densité.

Les résultats deviennent homogènes!

3.3.4 Carotte / PQI

	1	2	3	4	5	6	7	8	9	10	11	12	13	moyenne:
Banc γ 50 mm	2,354	2,331	2,347	2,402	2,382	2,345	2,336	2,242	2,336	2,345	2,315	2,364	2,332	2,341
PQI 1 (380)	2,369	2,346	2,362	2,358	2,361	2,358	2,356	2,297	2,351	2,354	2,347	2,344	2,347	2,350
PQI 2 (380)	2,344	2,360	2,371	2,361	2,367	2,379	2,369	2,334	2,344	2,361	2,366	2,352	2,354	2,358
PQI 3 (380)	2,335	2,359	2,370	2,369	2,370	2,397	2,245	2,300	2,323	2,358	2,376	2,359	2,312	2,344
PQI 4 (380)	2,383	2,328	2,373	2,352	2,372	2,369	2,368	2,327	2,368	2,384	2,374	2,364	2,367	2,363
PQI 5 (301)	2,356	2,361	2,362	2,357	2,351	2,371	2,366	2,361	2,363	2,359	2,365	2,356	2,360	2,360



Commentaire:

Le PQI 5, type 301, présente très peu de variations.

Le PQI 3 semble «décalé» par rapport aux autres appareils.

	1	2	3	4	5	6	7	8	9	10	11	12	13	moyenne:
Banc g 50 mm	2,354	2,331	2,347	2,402	2,382	2,345	2,336	2,242	2,336	2,345	2,315	2,364	2,332	2,341
PQI 1 (380)	2,369	2,346	2,362	2,358	2,361	2,358	2,356	2,297	2,351	2,354	2,347	2,344	2,347	2,350
PQI 2 (380)	2,344	2,360	2,371	2,361	2,367	2,379	2,369	2,334	2,344	2,361	2,366	2,352	2,354	2,358
PQI 4 (380)	2,383	2,328	2,373	2,352	2,372	2,369	2,368	2,327	2,368	2,384	2,374	2,364	2,367	2,363

Commentaire:

Les 3 PQI 380 sont assez similaires. Ils refletent la tendance générale en écrasant fortement les extrèmes, comme les Pave Tracker.

Les résultats deviennent homogènes!

3.4 Synthèse des résultats :

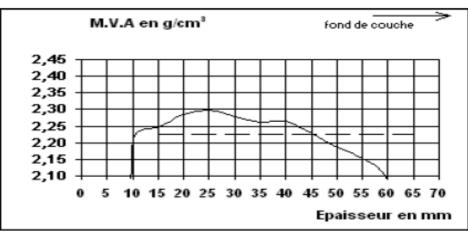
→ Le banc gamma et le GPV sont parfaitement calés sur les résultats des pesées hydrostatiques.

En valeur absolue, la moyenne des écarts est de 9 Kg/m³ avec un écart type de 10 Kg/m³

→ Les gammadensimètres, après correction, suivent assez bien la tendance des carottes.

En valeur absolue, la moyenne des écarts est de 18 Kg/m³ avec un écart type de 16 Kg/m³ Attention, avec l'utilisation du filler la correction est négative.

→ Les Pave Tracker, après correction, lissent les variations de densité.


En valeur absolue, la moyenne des écarts est de 31 Kg/m³ avec un écart type de 23 Kg/m³

→ Les PQI, après correction, lissent les variations de densité.

En valeur absolue, la moyenne des écarts est de 29 Kg/m³ avec un écart type de 22 Kg/m³

Les courbes de résultats au banc gamma ont permis de détecter un gradient de densité important sur la carotte N° 8. La densité d'environ 2280 Kg/m3 sur les 4 premiers centimètres chute ensuite à 2100 Kg/m3 à 6 cm. (moyenne 2230) Les Pave Tracker et PQI effectuent des mesures de surface. (3 à 4 cm) Ils ne peuvent donc pas constater la chute de densité en partie inférieure.

Carotte n°:	G8
n° enregistrement :	15 4
Couche:	ILiaison
Technique	BBSG 0/10
MVA moyenne (g/cm3)	2,23
MVA maximale (g/cm3)	2,30
MVA minimale (g/cm3)	2,08
Ecart-type	0,07
Compacité (%)	90,1
Epaisseur exploitée (mm)	55
Epaisseur de la couche (mm)	62

Ceci explique une partie de l'écart constaté sur la carotte N° 8.

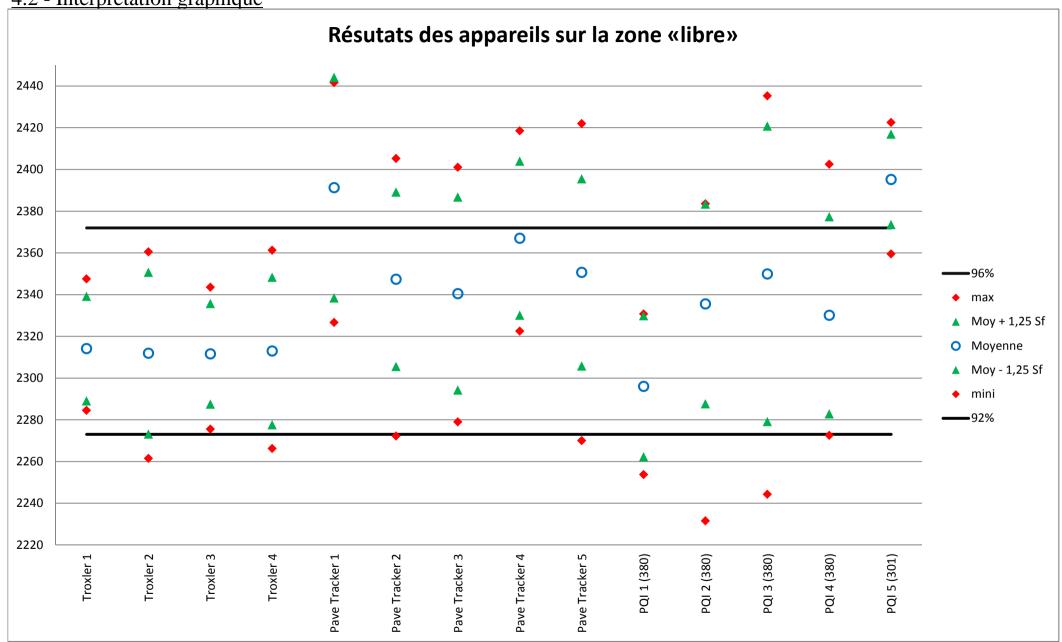
Résultat de "surface" du banc gamma : 2280 KG/m3, résultat des pave Tracker et PQI 380 : 2320.

Les gammadensimètres (en rétrodiffusion) mesurent 5 à 6 cm selon le règlage et le model. Ils constatent mieux cette variation de densité.

Après une correction de type Offset, les densimètres électromagnétiques donnent une tendance mais la densité réelle reste celle des essais normalisés.

Une attention particulière doit être portée sur l'épaisseur de mesure réelle des appareils utilisés.

4 - Mesures sur la zone «libre»


4.1 Résultats corrigés

						* 1		. ,	/ 1		. 170		1							
						V	aleurs c	orrigees	(avec I	a correc	tion def	ınıe sur	la prem	iere zon	e)					
Troxler 1 (filler)	2,290	2,329	2,285	2,309	2,314	2,334	2,327	2,311	2,299	2,348										
Troxler 2 (5cm + filler)	2,305	2,306	2,308	2,343	2,289	2,325	2,361	2,262	2,281	2,344										
Troxler 3c (+ filler)	2,316	2,323	2,299	2,316	2,276	2,330	2,318	2,296	2,303	2,344										
Troxler 4 (5cm + filler)	2,324	2,301	2,302	2,341	2,310	2,334	2,307	2,266	2,281	2,361										
Pave Tracker 1	2,346	2,327	2,441	2,442	2,387	2,384	2,425	2,435	2,377	2,352										
Pave Tracker 2	2,378	2,388	2,358	2,338	2,324	2,272	2,405	2,296	2,338	2,358	2,318	2,358	2,348	2,368	2,348	2,328	2,378			
Pave Tracker 3	2,341	2,401	2,387	2,306	2,279	2,364	2,316	2,340	2,323	2,348										
Pave Tracker 4	2,419	2,397	2,400	2,395	2,323	2,393	2,343	2,365	2,324	2,393	2,330	2,360	2,350	2,349	2,334	2,390	2,350	2,388	2,380	
Pave Tracker 5	2,375	2,331	2,322	2,347	2,270	2,367	2,368	2,374	2,374	2,401	2,422	2,328	2,344	2,326	2,313	2,364	2,335			
PQI 1 (380)	2,275	2,291	2,325	2,331	2,304	2,267	2,254	2,280	2,309	2,327										
PQI 2 (380)	2,366	2,374	2,349	2,323	2,379	2,352	2,332	2,379	2,364	2,384	2,323	2,283	2,299	2,232	2,312	2,327	2,308	2,324	2,338	2,373
PQI 3 (380)	2,357	2,390	2,360	2,311	2,435	2,244	2,391	2,359	2,286	2,335	2,281	2,423	2,374							
PQI 4 (380)	2,273	2,315	2,289	2,329	2,357	2,314	2,392	2,316	2,377	2,278	2,349	2,339	2,293	2,315	2,331	2,350	2,403			
PQI 5 (301)	2,389	2,394	2,420	2,396	2,418	2,423	2,410	2,386	2,373	2,360	2,382	2,398	2,391	2,396	2,400					

	Moyenne	Sf : écart type	mini	max	Moy + 1,25 Sf	Moy - 1,25 Sf	Nb Val
Troxler 1	2314	20	2285	2348	2339	2289	10
Troxler 2	2312	31	2262	2361	2351	2273	10
Troxler 3	2312	19	2276	2344	2336	2288	10
Troxler 4	2313	28	2266	2361	2348	2278	10
Pave Tracker 1	2391	42	2327	2442	2444	2338	10
Pave Tracker 2	2347	33	2272	2405	2389	2306	17
Pave Tracker 3	2341	37	2279	2401	2387	2294	10
Pave Tracker 4	2367	30	2323	2419	2404	2330	19
Pave Tracker 5	2351	36	2270	2422	2396	2306	17
PQI 1 (380)	2296	27	2254	2331	2330	2262	10
PQI 2 (380)	2336	38	2232	2384	2383	2288	20
PQI 3 (380)	2350	57	2244	2435	2421	2279	13
PQI 4 (380)	2330	38	2273	2403	2377	2283	17
PQI 5 (301)	2395	17	2360	2423	2417	2374	15

Rappel:

Les emplacements et le nombre d'essais étaient laissés au choix des techniciens sur site. 4.2 - Interprétation graphique

^{*} Les gammadensimètres Troxler ont effectués leurs mesures sur la même zone. (Utilisation du filler)

4.3 Conclusion

Gammadensimètre:

Les 4 gammadensimètres sont extrèment homogènes.

Moyenne entre 2312 et 2314 Kg/m³ soit 93,6% de compacité pour tous. (Écart type entre 19 et 31)

La Reproductibilité des gammadensimètre est excellente. De plus, ils ont démontré en première partie leur cohérence avec les carottes.

Pave Tracker:

Les 4 Pave Tracker (après avoir écarté l'appareil N° 1) sont assez homogènes en moyenne. La densité moyenne est plus élevée et les résultats sont plus dispersés que ceux des gammadensimètres.

Moyenne entre 2341 et 2367 Kg/m³ soit une compacité entre 94,7% et 95,8%. (Écart type entre 30 et 37)

La Reproductibilité entre Pave Tracker est bonne (variation de 1,1% sur la compacité moyenne)

POI:

Les 4 PQI 380 (sans le PQI 301) sont encore plus hétérogènes entre eux, avec des résultats dispersés pour chaque appareil. Mais la moyenne reste parfaitement cohérente avec les autres appareils.

Moyenne entre 2296 et 2350 Kg/m³ soit une compacité entre 92,9% et 95,1%. (Écart type entre 27 et 57)

La Reproductibilité est moins bonne (variation de 2,2% sur la compacité moyenne)

<u>Pour tous les appareils</u>, la dispertion des résultats peut être liée à l'hétérogénéité de la zone de mesure. Ce qui a été constaté sur la zone de mesures imposées.

Rappel : Point N° 4 à 2402 et point N° 8 à 2242 soit de 90,7 à 97,2% de compacité sur ce chantier.

5 - Bilan

Les gammadensimètres, après correction de type Offset, donnent des résultats très Reproductibles et cohérents vis-àvis des carottes.

Les densimètres électromagnétiques sont plus dispersés et lissent les amplitudes de densité en place. Ce phénomène peut aussi être lié à l'épaisseur de mesure faible. Malgré tout, après correction la densité moyenne est représentative et le phénomène de gradient de densité sur une carotte n'a été observé qu'une fois (sur 13 échantillons).

Les densimètres électromagnétiques doivent être considérés comme des outils d'information fiable en moyenne, mais ne peuvent pas être utilisés comme des appareils de réception au sens de la NF P 98-150-1.

L'article 12.4.2.3 spécifie : « un lot est déclaré recevable si la proportion de <u>valeurs mesurées</u> situées en dehors de l'intervalle [Vi, Vs] est au plus de 1/20». L'article 12.4.2.4 impose «<u>Toutes les valeurs</u> de contrôle devront être dans l'intervalleVs + 2%, Vi - 2%».

Les densimètres permettent de traiter les valeurs moyennes (tableau 8 de la NF P 98-150-1) mais pas les valeurs individuelles.

Remarque liée à la métrologie :

Les différents appareils possèdent une plaque de référence permettant de réaliser un calage sur site. Le fabriquant propose pour les Pave Tracker et les gammadensimètres un calibrage sur des blocs de référence (Polyéthylène, Granite et Calcaire). Les PQI n'ont pas de calibrage sur des blocs de référence.

	Vérificateurs :		
Le chef de laboratoire du	Le chef du laboratoire	Le chef de laboratoire de	Le technicien du CEREMA
Mans	d'Alençon	Rennes	Saint Brieuc
3	Jany.		Jed-
F. RABILLER	J. JARRY	B. CHOLLET	T. LECORRE