

Journée Technique Buses Métalliques

Fonctionnement et dimensionnement

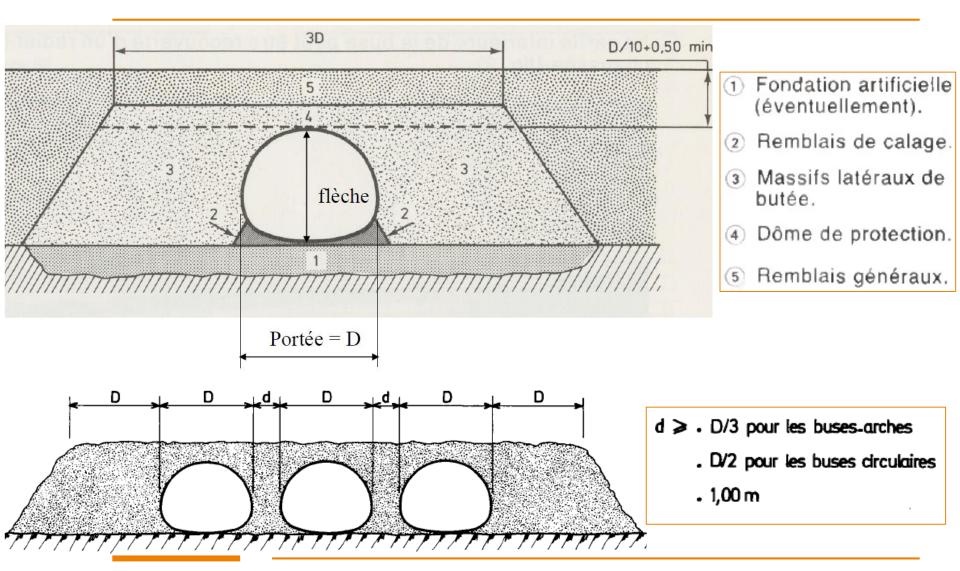
Anthony HEKIMIAN - Cerema

Sommaire

- Fonctionnement
- —Comportement
- Principe des justifications
- Cas des convois exceptionnels
- Modélisation réservée à la réparation

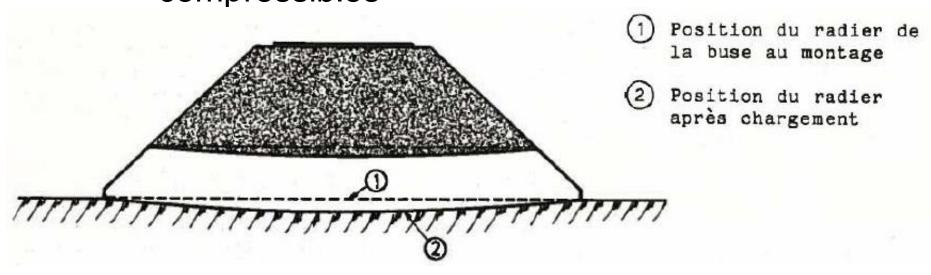
Fonctionnement

Le fonctionnement d'une buse métalliques résulte de l'association de deux milieux, mécaniquement indissociables :


- Les terres environnantes :
 - Fondation
 - Remblais latéraux
 - Couverture
- La buse métallique (destinée à réorienter les contraintes dans le massif de sol, peu de résistance intrinsèque)

Importance particulière des remblais latéraux de butée sur le fonctionnement global de l'ouvrage

Fonctionnement



En cours de construction

- Faible rigidité, et donc grande déformabilité des tôles
- Nécessité de mettre en œuvre les remblais de butée de manière symétrique de part de d'autre de la buse, avec compactage par couches successives de hauteur limitée à 25-30 cm
- Certaines buses ont été montées par des entreprises de terrassement, ne respectant pas nécessairement le phasage de montage des remblais...

Longitudinalement

- Grande souplesse longitudinale,
- Adaptation aux tassements différentiels
 ouvrage bien adapté dans le cas de sols compressibles

Transversalement

- Souplesse transversale
- Mobilisation de la butée latérale du sol
- Nécessité d'une raideur suffisante et homogène des remblais environnants

Ouvrage rigide

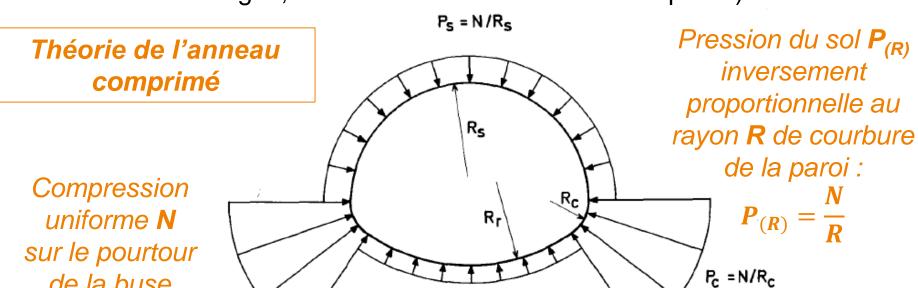
Ouvrage souple

Transversalement

Qualité des remblais techniques et phasage de réalisation

fondation artificielle (éventuellement)

banquette latérale éventuelle


remblais latéraux de butée

dôme (ou matelas) de couverture

Transversalement

- Fonctionne principalement en compression, flexion limitée
- Risque d'instabilité
- Nécessité d'une hauteur de couverture suffisante (diffusion des charges, fonctionnement en anneau comprimé)

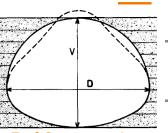
 $P_r = N/R_r$

de la buse

— Objectif du recalcul :

- Expliquer les désordres observés,
- Anticiper leur évolution,
- Evaluer les efforts en vue d'une mise en sécurité

— Limites d'emploi :


 Absence de pathologie remettant en cause la théorie de l'anneau comprimé (exemple : corrosion localisée, inversion de courbure,...)

Connaissance des matériaux de remblai...

Modélisation & critères de vérification :

- Règles du guide « Buses métalliques » (SETRA, 1981) et ses mises à jour (1982, 1985)
- Vérifications <u>principalement en service</u>

Déformations pendant le remblaiement

Buses métalliques

- Pression P_s (pression au sommet ou à la clé) est supposée connue :
 - → on détermine l'effort de compression **N** dans la buse
 - → on en déduit les pressions P appliquées au terrain en chaque point, connaissant les rayons de courbure de la buse
- Combinaison de calcul à l'ELU :

$$S_c = \gamma_{F3} S(\gamma_{F1G}.G + \gamma_{F1Q}.Q)$$

où:

G désigne l'ensemble des actions permanentes

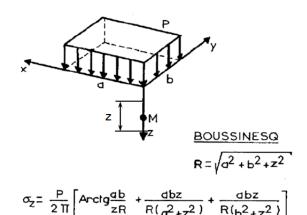
Q l'action variable de base considérée (charges d'exploitation)

 Calcul de la pression P_s au sommet de la buse (à la clé) :

$$P_S = P_S \left(\gamma_{F1G}. G + \gamma_{F1Q}. Q \right)$$

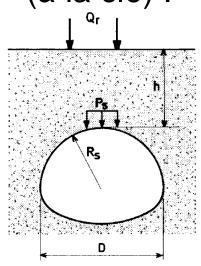
 Pression due aux charges permanentes (= poids des terres en général)

$$P_{SG} = \gamma_{F1G} \gamma h = 24 h$$


 $\gamma \approx 20 \, kN/m^3$ (poids volumique du sol)

h : hauteur de couverture de remblai

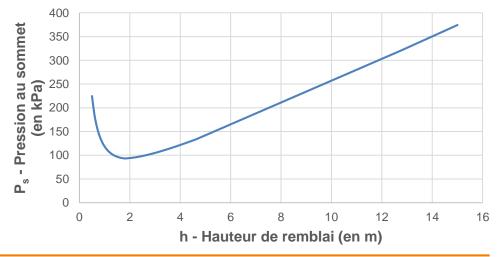
- Calcul de la pression P_s au sommet de la buse (à la clé) :
 - Pression due aux charges d'exploitation


h (m)	$P_S = S (Y_{F1Q},Q)$ (kPa)	Type de charge	Observations
0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0	238,2 87,2 61,7 48,6 38,3 31,0 25,6 23,6 21.7 20,2 18,9 17,8 16,8 15,9 15,2	Br Bc Bt " " " " A(1) " " " " " "	Compte tenu des valeurs adoptées pour les coefficients Y F1Q, les charges de caractère exceptionnel prises en compte ici ne sont jamais prépondérantes.

- Charges du F61 titre II
- Majoration dynamique
- Diffusion des charges suivant la méthode de Boussinesq :

Calcul de la pression P_s au sommet de la buse

(à la clé) :



$$H_{min} = \frac{D}{10} + 0.5m \quad pour D \ge 2m$$

$$H_{min} = \frac{D}{5} + 0.3m \quad pour D \le 2m$$

$$H_{max} = 20 \frac{R_c}{R_S}$$

Pression (en kPa)	Hauteur de remblai (en m)
$P_S = \frac{85}{h - 0.1} + 24h$	$0.30 \le h \le 1.80$
$P_S = \frac{115}{h + 0.5} + 24h$	$1,80 \le h \le 4,65$
$P_S = 27 + 23h$	$4,65 \le h \le 12,80$
$P_S = 14.2 + 24h$	$h \ge 12,\!80$

14

Critère ELU de résistance à la compression des parois

$$N = \max(P_S.R_S; P_S.D/2)$$
 et $N_u = \gamma_{F3} N$

On doit vérifier : $N_u \leq R_{pc}/\gamma_m$

- R_s: rayon de courbure des plaques de sommet
- D : portée horizontale de la buse
- $\gamma_{F3} = 2$ (car moments de flexion négligés)
- $R_{\rm pc}$: résistance à la rupture en compression de la paroi avec son épaisseur de calcul $e_{\rm c}$
- $-\gamma_{\rm m}$ = 1,5 ou 1,65 (selon l'importance de l'OA)
- \Rightarrow On obtient l'épaisseur minimale $\mathbf{e_c}$ à partir des fiches techniques des produits :

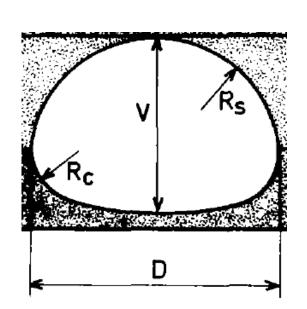
* 3 boulons/onde
$$\begin{cases} e = 1 + \frac{R_p}{500} & 0 \leq R_p \leq 500 \text{ kN/m} \\ e = 0.9 + \frac{R_p}{455} & 500 \leq R_p & \text{limité à 7 mm} \\ \text{d'épaisseur nominale} \end{cases}$$

Epaisseur sacrifiée à la corrosion

$$e_0 = e_c + e_s$$

− e₀ : épaisseur nominale de la tôle

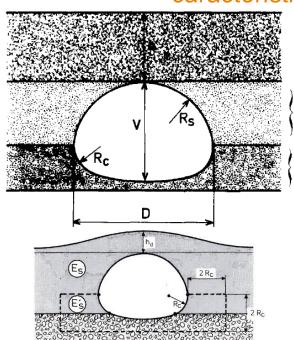
– e_c : épaisseur nominale de calcul


– e_s: épaisseur sacrifiée à la corrosion

$$e_s = e_r + e_a$$

Réserve d'épaisseur e _r (mm) côté remblai					
	OA ordinaire	OA de grande importance			
Hors d'eau	0,50	0,75			
En eau douce	0,75	1,00			

Reserve d'épaisseur e _a (mm) cote atmosphere					
	Visitable	Non visitable			
$SO_2 < 0.1 \text{mg/m}^3$	0,25	0,50			
$SO_2 \ge 0.1 \text{mg/m}^3$	0,50	0,75			


- Critère ELU d'instabilité de forme (inversion de courbure à la clé)
- ⇒ On obtient le module élastique E_s requis pour les remblais de butée latéraux (pour une paroi de caractéristiques données)

$$E_S = k \sqrt{\frac{N^3}{E_a I_c}} \qquad k = \frac{42}{\sqrt{\left(\frac{V}{D}\right)^3}} \qquad \left(\frac{V}{D}\right) \ge 0.6$$

- Le produit E_aI_c désigne la rigidité de la paroi sous son épaisseur de calcul e_c.
 Sa valeur est donnée par les fiches techniques.
- Es de l'ordre de 40 à 80 MPa

- Critère ELS de déformation limite (limitation des contraintes dans l'acier : 50% f_e)
- \Rightarrow On obtient les modules élastiques E_s et E_s ' requis pour les remblais de butée latéraux (pour une paroi de caractéristiques données)

$$E_S$$
 $(MPa) \ge 1.5v_0 \left(1 + \frac{h}{R_S}\right)$

 \mathbf{v}_{o} : distance de la fibre extrême à l'axe neutre pour l'épaisseur nominale (en cm) (cf. fiches tech.)

Pour les **buses arches**, sous les plaques de coin :

$$E'_{S} = \frac{R}{V-R}E_{S}$$
 avec: $R = max\left(R_{S}; \frac{D}{2}\right)$

30 Janvier 2020

Les convois exceptionnels

- Difficulté pour les gestionnaires d'ouvrages de vérifier les buses métalliques sous le passage de convois exceptionnels
 - Démarche ± empirique
 - Nombre d'essieux pouvant solliciter la buse en fonction de son ouverture D
 - Comparaison du tonnage des essieux du convoi au tonnage des essieux des camions B_c du règlement de l'époque de construction
 - Comparaison des charges réparties induites en surface par le convoi par rapport à celles des charges du règlement de construction
 - (peu ou) pas d'outils de calculs disponibles ou développés

Les convois exceptionnels

Outil de calcul CONVOA du Cerema

- Actuellement réservé aux services de l'Etat (forme d'acquisition pour les services hors Etat ?)
- Modèle BUSE spécialement conçu (applique la méthode du guide SETRA 1981)
- Limité aux buses construites après 1982 (postparution du guide de 1981)
- Évalue un indicateur global de pression à la clé, à l'ELU (ELS implicitement vérifié du fait de la valeur adoptée sur le coefficient de sécurité pour la vérification à l'ELU)
- Pression à la clé évaluée selon la méthode de Boussinesq

Les convois exceptionnels

Sollicitation ultime de dimensionnement

$$P_{u,dim} = \gamma_{F3}.P(\gamma_{F1G}.G + \gamma_{F1Q}.Q)$$

$$P_{u,dim} = 2 \times (1, 2 \times \gamma_{remblai} \times h + \gamma_{F1Q}.P_Q)$$

Sollicitation ultime due au convoi étudié

$$P_{u,convoi} = \gamma_{F3,réduit}.P(\gamma_{F1G}.G + \gamma_{F1Q,convoi}.Q_{convoi})$$

$$P_{u,convoi} = \gamma_{F3,r \in duit} \times (1, 2 \times \gamma_{remblai} \times h + 1, 2 \times P_{Q,convoi})$$

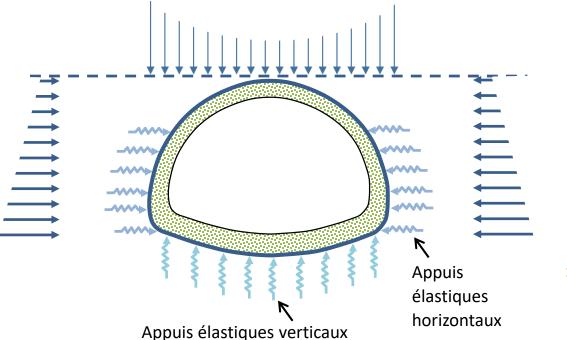
 $\gamma_{F3,r\acute{e}duit} = 2$ pour une épaisseur de remblai inférieure à 2 m

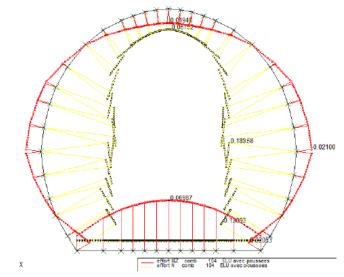
 $\gamma_{F3,r\acute{e}duit} = 1,5$ pour une épaisseur de remblai supérieure à 4 m

 $\gamma_{F3,r\acute{e}duit}$ varie linéairement entre ces 2 valeurs pour une épaisseur comprise entre 2 et 4 m

Indicateur CONVOA

$$I = \frac{P_{u,convoi}}{P_{u,dim}}$$





Méthodes de modélisation pour réparation

Modélisation 2D à barres (ou 3D) avec prise en compte de l'interaction sol-structure

Méthode déconseillée pour le calcul d'une buse souple (trop sensible) mais adaptée dans le cas d'un renforcement (chemisage tube PRV ou anneau BA...) plus rigide

⇒ On obtient les sollicitations N, M pour réaliser une vérification « classique »

Merci de votre attention

Anthony HEKIMIAN

Division Ouvrages d'Art du Cerema Méditerranée 04 42 24 76 95

Anthony.Hekimian@cerema.fr