Some investigations into

Battery-powered trams

and other catenary-free solutions

Anna Chang

Wolfson School of Mechanical, Electrical and Manufacturing Engineering
Loughborough University, UK

About Loughborough

- The Times and Sunday Times University of the Year 2019.
- University of the year at the Whatuni Student Choice Awards 2018
- In 2018, Best in the UK for Student Experience Times Higher Education Student Experience Survey, 5th time since 2009
- Ranked 4th in the 2019 Guardian University League table. It ranked 30th in Britain in 2014.
- Loughborough is renowned in the UK for its sports. World's largest university-based sports technology research group.
- UK top 3 for Mechanical Engineering and in the UK top 10 for Electronic and Electrical Engineering

- Wolfson School of Mechanical, Electrical and Manufacturing Engineering – Smart Cities EPSRC Grant
- Energy Utilisation to Improve Light Rail Development
- Specifically on tramways, their development and cost, and in particular on the gap between engineering, economics, and socio-political players
- and the <u>costs of prolonged</u> <u>decision-making.</u>

EPSRC

Engineering and Physical Sciences Research Council

About Anna Chang

Transferable skills: Strategic Management, Change Management, Business Process Re-engineering, Marketing, PR, Project Management.

Regional Marketing Manager

UK Ministry of Defence Speech & Sound Technology

Regional Accounts Director

Revamp private labels for No Frills and First Choice brand across 7 countries

The objective

To develop a model of a tram route on which to test various combinations of power supply and battery technology

Model must give a realistic overview of the typical power usage on a typical route

But need not examine the power requirements in great detail – a "helicopter view"

Nottingham Express Transit

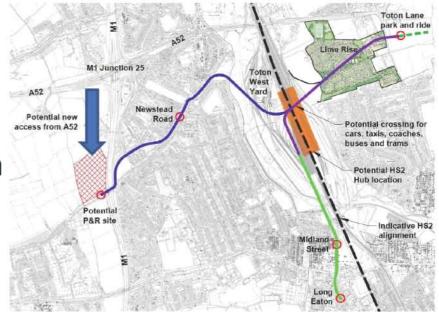
March 2004

15 Bombardier Incentro AT6/5

22 Alstom Citadis 302

32km (20 miles) 2 lines, 50 stations

Ridership: 18.8 million (2018/19



#InspiringWinners since 1909

EXTENSION TO HS2 HUB

- 1.6km extension from Toton P&R
- 4 mins journey time
- Route alignment through proposed Lime Rise development west of Toton Lane
- Interface with HS2 Hub / station

All HS2 Route Options

EAST MIDLANDS AIRPORT OPTIONS

Option	Route length from Toton P&R	No. of stops	Journey times from HS2	% segregated	Capital cost £m from Toton P&R
EMA via East Midlands Gateway	14.4 – 15.9km	10-13	24-28 mins	81 - 97	346
EMA via Castle Donington	18.2km	13	33 mins	81 - 91	388

DERBY OPTIONS

Option	Route length from Toton P&R	No. of stops	Journey times from HS2	% segregated	Capital cost £m from Toton P&R
A52	15.8km	5	18 mins	95	682
Former canal corridor	16.5km	14	28 mins	76 – 92	402

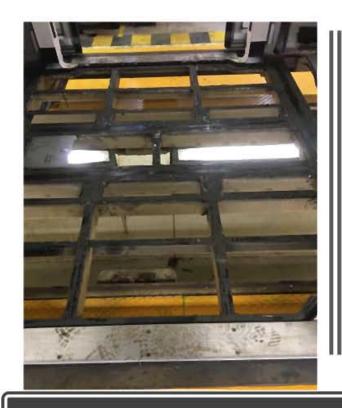
Power from catenary / OLE

- Traditional, tried-and-tested technology
- Problems
 - Cost of installation wires, substations, energy supply
 - Cost energy supply in operation
 - Visual intrusion and equipment in street
 - Risks
 - loss of power
 - Icing
 - Danger of live wires
 - Danger of collapse of OLE

Power from Battery/wireless trams

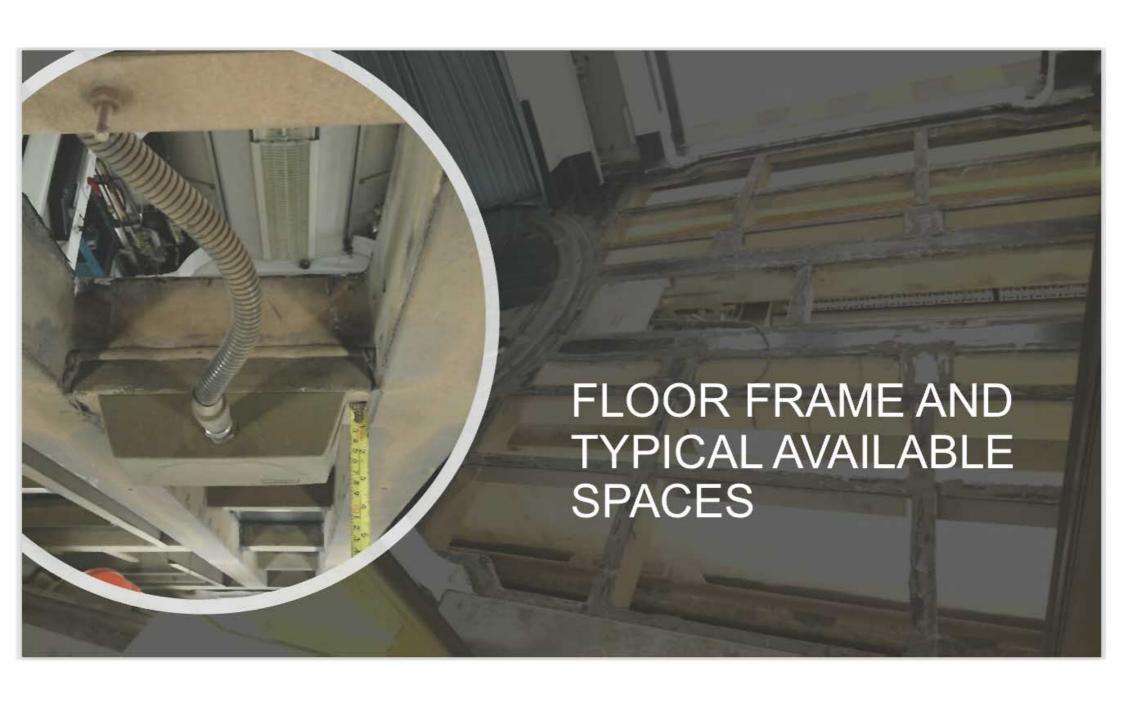
- Risk and uncertainty with new technology
- Safety Risks known, can be contained
 - Fire through overheating
 - Spontaneous fire
 - Spillage in the event of an accident
- Newer technologies can be very safe
- Cost always an issue

Other new technologies


- Other new technologies are emerging -
 - Super capacitors
 - Hydrogen fuel cells
 - Hybrid energy storage batteries/supercaps
- Risk and uncertainty with new technology
- Cost always an issue

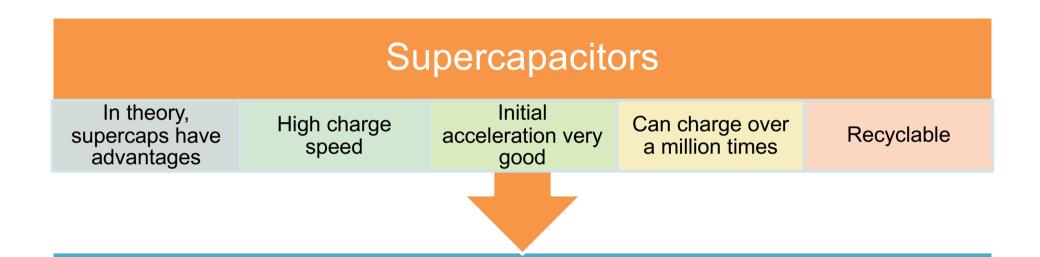
Issues with batteries

- Space where to fit them
- Mass
 - Ideally keep them low down
 - Difficult with low-floor trams
 - Better with tram-train
- Power rates charge / discharge
- Energy / capacity
- Performance in service speed, acceleration
- Lifetime and replacement costs



FLOOR FRAME AND TYPICAL AVAILABLE SPACES

16 PAIRS OF SEATS BACK-TO-BACK WITH POWER ELECTRONICS BETWEEN, OVER MOTOR BOGIE



ROOF-MOUNTED POWER ELECTRONICS AND HVAC EQUIPMENT

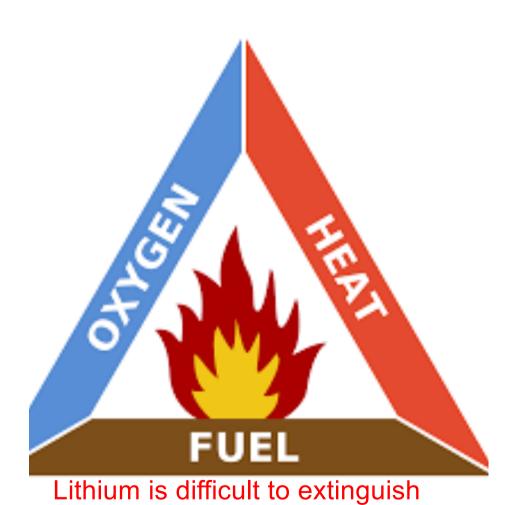
How to tackle these issues

Hybrid – supercap for performance, slow charge for batteries

Comparison of energy and power densities of battery and supercapacitor

	Energy Density (Wh/kg)	Power Density (W/kg)
Battery	<mark>210</mark>	200
Supercapacitor	1.33	11000

Source: https://ieeexplore.ieee.org/document/7455088


Comparison of supercapacitors and lithium-ion batteries

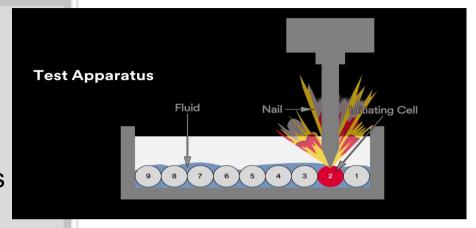
Function	Supercapacitor	Lithium-ion Battery
Charging period	<mark>1 - 10 s</mark>	<mark>10 - 60 min</mark>
Cycle period	30000 h	Approximately 500
Cell voltage	2.3-2.85V	3.7-4.0V
Specific Energy (Wh/kg)	2 - 5	100 - 200
Specific Power (W/kg)	> 10000	1000 - 3000
Cost per Wh (\$/Wh)	<mark>20</mark>	<mark>0.5 - 1</mark>
charge temperature	-40 - 65 °C	0 - 45 °C
discharge temperature	-40 - 65 °C	-20 - 60 °C

Battery and Supercapacitor cell characteristics

Specifications	Battery	Supercapacitor
Nominal Voltage (V)	3.2	2.7
Nominal Capacity (Ah)	2.6	NA
Rated Capacitance (F)	NA	2000
Energy Storage (Wh)	<mark>8.32</mark>	<mark>2.03</mark>
Weight (kg)	<mark>0.0805</mark>	<mark>0.36</mark>
Energy per Weight (Wh/kg)	<mark>103.35</mark>	<mark>5.64</mark>

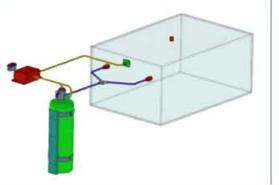
Source: https://ieeexplore.ieee.org/document/7177105

Risk Mitigation


- Detect the heat
- Apply cooling or switch it off
- Battery Management System (BMS)

Energy from impact damage or mishandling

-> BMS can have failure


3M[™] Novec[™] Engineered Fluids

- Can be use on high-speed electric trains to wind turbines to electric drive motors
- Can precisely control electrical voltages on a large scale

Automobile lithium battery box fire extinguishing device.
Compulsory on full electric buses use in China

#InspiringWinners since 1909

Our outstanding campus

Largest single site green campus in the UK

