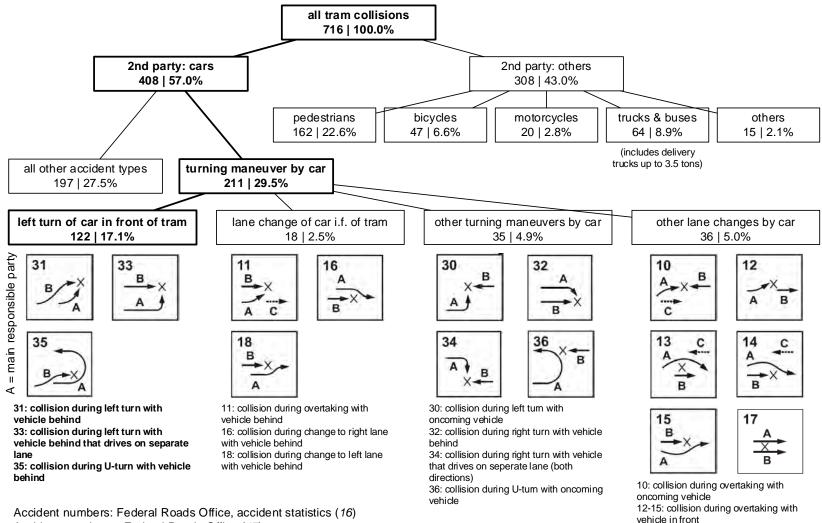


Infrastructure and Operational Influences on Collisions between Trams and Left Turning Cars

Unpublished results Urban Tram Safety Meeting, November 3-4, 2016, Lyon

C.M. Marti, A. Toletti, S. Tresch, and U. Weidmann

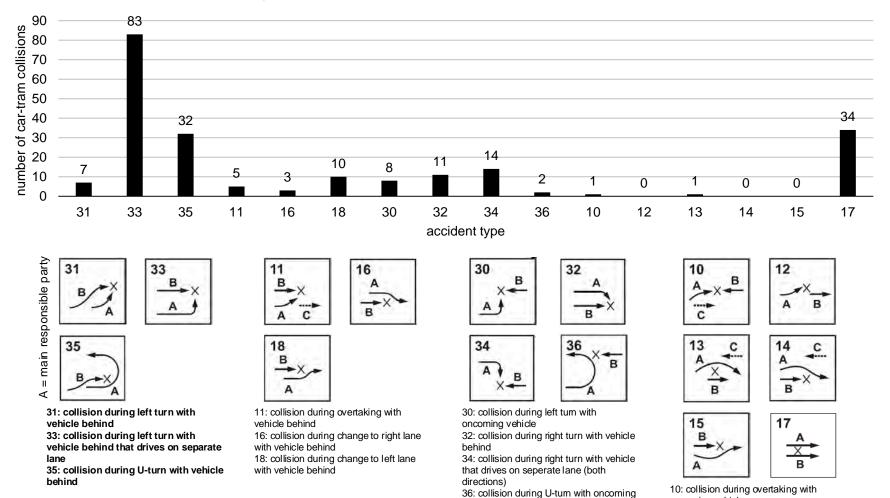
Swiss Federal Institute of Technology Zurich (ETH Zurich), Institute for Transport Planning and Systems (IVT)


Outline

- 1. Research Question and Relevance
- 2. Methods
- 3. Descriptive Data Analysis
- 4. Regression Results
- 5. Discussion and Conclusions

Part 1: Research Question and Relevance

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems


Second parties and accident types for collisions between trams and other road users in Switzerland for years 2012-2014

Accident type icons: Federal Roads Office (17)

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems 17: side swipe collision

Second parties and accident types for collisions between trams and other road users in Switzerland for years 2012-2014

vehicle

Accident numbers: Federal Roads Office, accident statistics (16) Accident type icons: Federal Roads Office (17) 12-15: collision during overtaking with

oncoming vehicle

17: side swipe collision

vehicle in front

Research gap / goal

Identify factors that influence the occurrence of left-turning cartram collisions with a quantitative analysis

Part 2: Methods

Approach

- Identify all left turning car-tram conflict points:
 - Trace entire tram networks of Zurich and Basel (Switzerland) using OpenStreetMap maps and Google Maps aerial pictures and street view
 - Mark every location where a left turn across the tramway is possible and has a destination (either a road or a local facility) as a conflict point in a GIS software (per direction)
- For each conflict point, collect data on dependent and predictor variables
- Use this dataset for a regression analysis

Number of conflict points:

Basel:247Zurich:546Total:793

Number of left-turning car-tram collisions (2010-2014):

Basel: 32 Zurich: 93 Total: 125

Regression Models

$$E[collisions_i] = g^{-1} \left(\beta_0 + \sum_j \beta_j X_{i,j} \right)$$

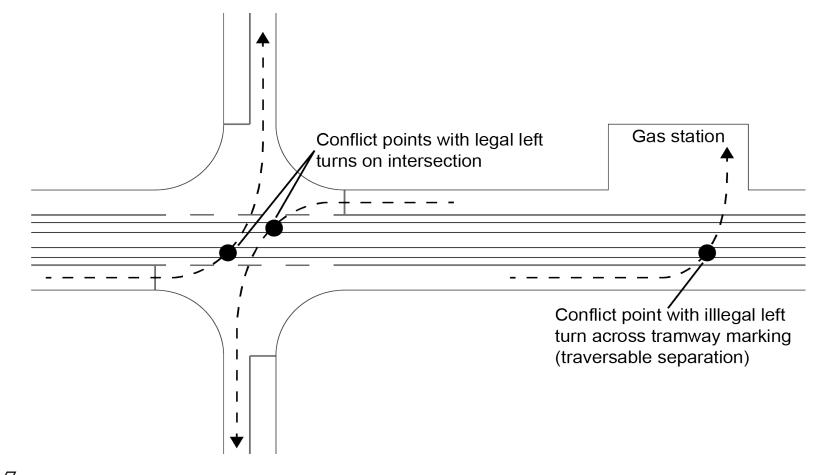
$$E[collisions_{i}] = \beta_{0} Q_{Tram}^{\beta_{-}Q_{-}tram} Q_{Car}^{\beta_{-}Q_{-}car} exp\left(\sum_{j} \beta_{j} X_{i,j}\right)$$

Dependent variable	no. of left-turning car-tram collisions (collisions/5years)			
Traffic volume	car traffic volume on road with tramway (AAWT)			
	tram traffic volume (trams/h in peak)			
Road type	car turning onto (yes=1, no=0)			
	main road			
	minor road			
	driveway, shop, gas station, parking, etc.			
Speed	modelled car speed on road with tramway (km/h)			
	operational tram speed (km/h)			
Tramway layout	tramway lane just before conflict point (yes=1, no=0)			
	separated, no violation possible (fence, high curb, etc.)			
	traversable separation (curb, grass track, etc.)			
	special texture, lines, marks			
	mixed use (lane separation as for cars)			
	lateral tramway position in road (yes=1, no=0)			
Intersection layout	left turn lane (yes=1, no=0)			
	angle of turning road relative to tramway (yes=1, no=0)			
	less than 60° (soft turn)			
	between 60° and 120° (approx. right angle)			
	more than 120° (sharp turn)			
Intersection control	traffic light (yes=1, no=0)			
	left turn restriction (yes=1, no=0)			
Road network	no. of intersections within 250m radius (along tram axis)			
Tram network	within 80m of tram stop (yes=1, no=0)			
Road geometry	in curve with radius < 50m (yes=1, no=0)			

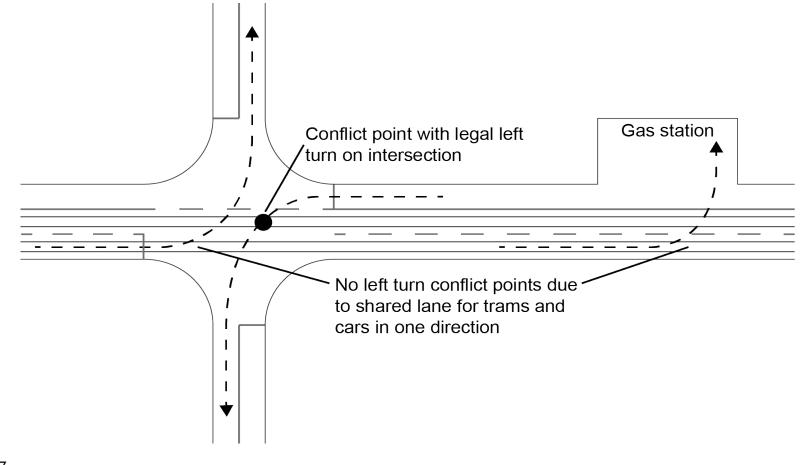
Conflict Point Identification

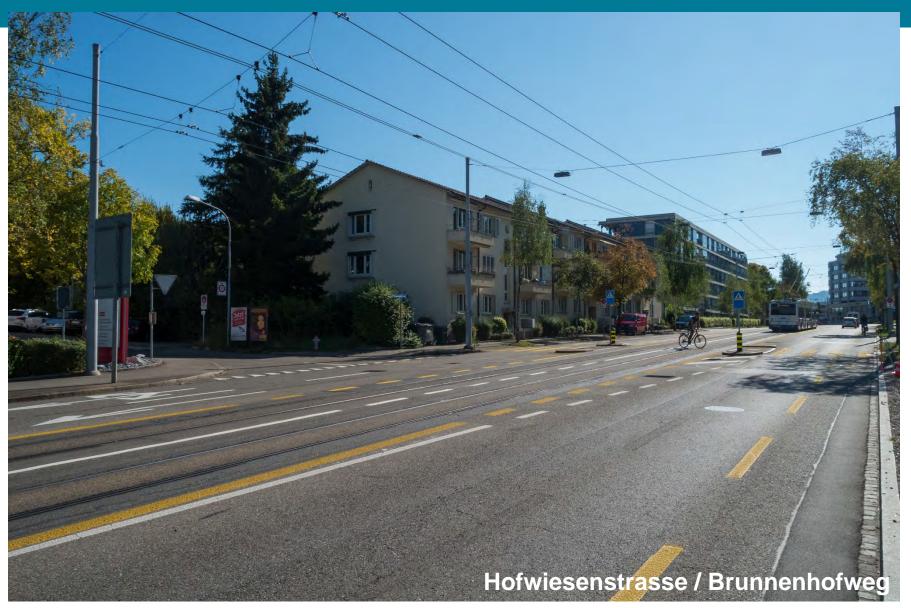
Conflict point = "a location where the paths of two motor vehicles [...] queue, diverge, merge, or cross each other" (Robinson et al. p. 104)

Limited to: car-tram conflicts

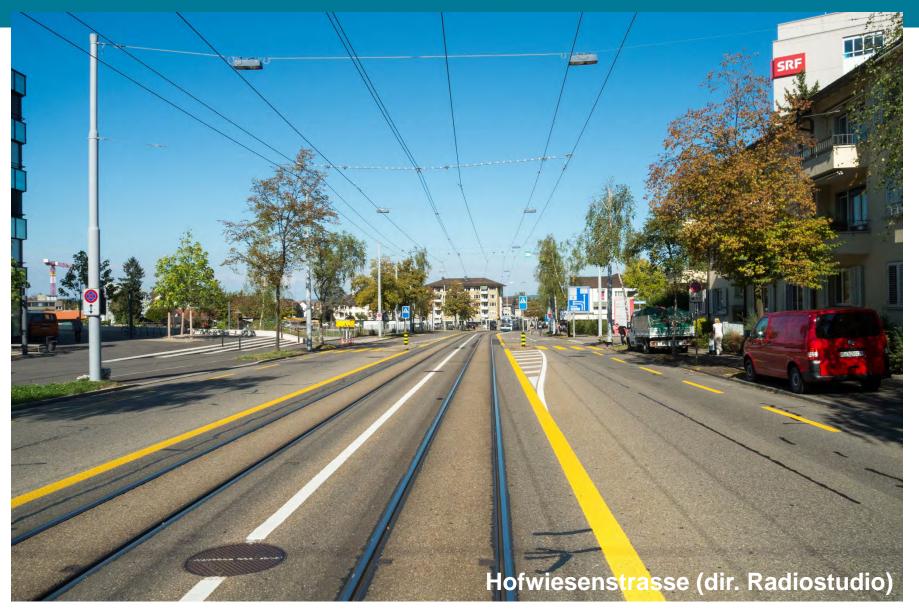

Of those, only consider crossing conflicts between cars and trams that initially drive in the same direction

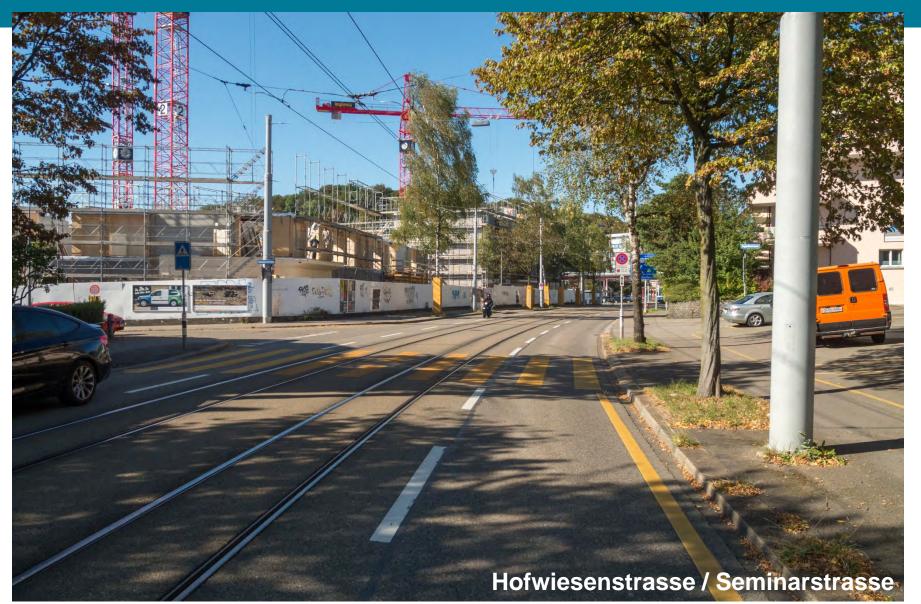
Respective crashes = "left turning car-tram collision"

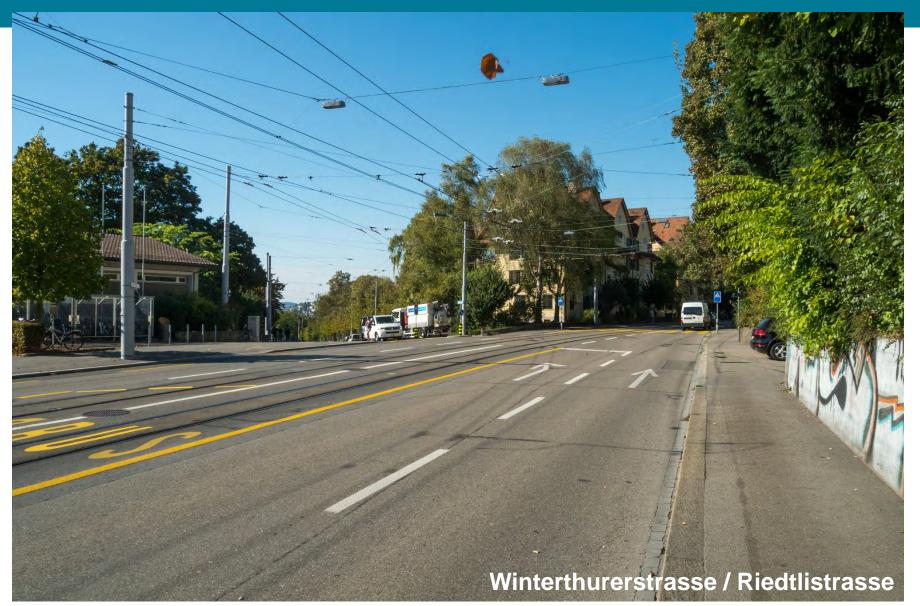

Not considered:

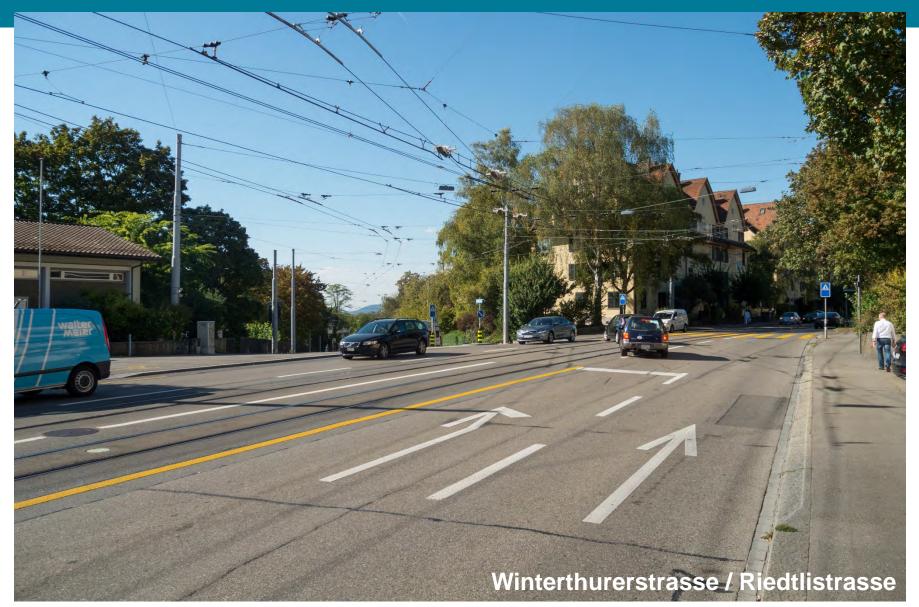

- crossing conflicts with oncoming trams
- diverging conflicts with trams driving in the same direction in the same lane

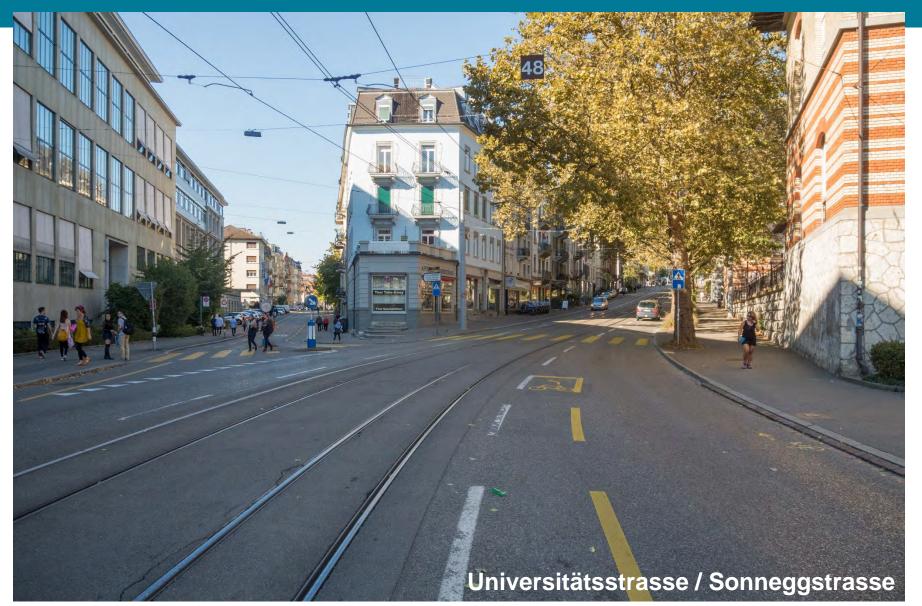
Conflict Point Identification with seperate lane

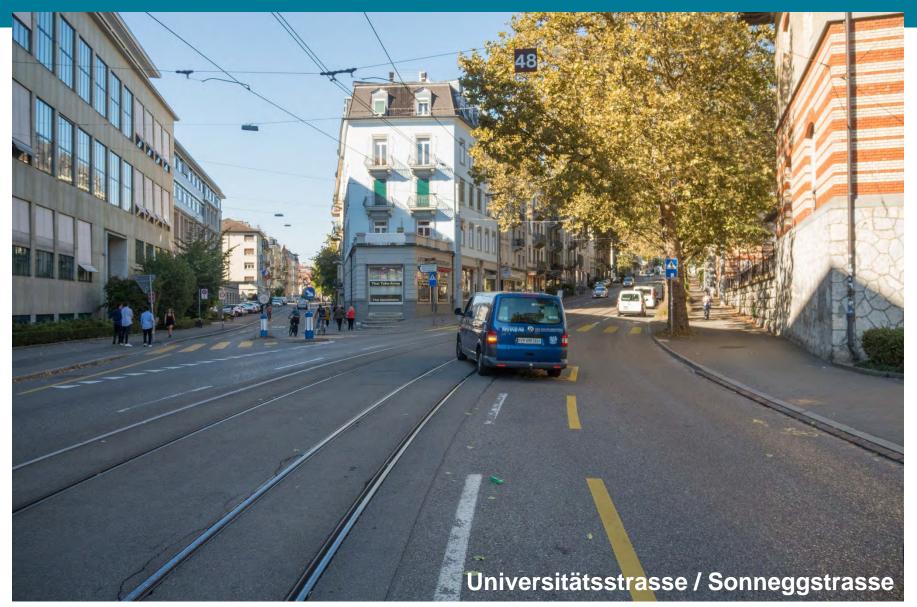


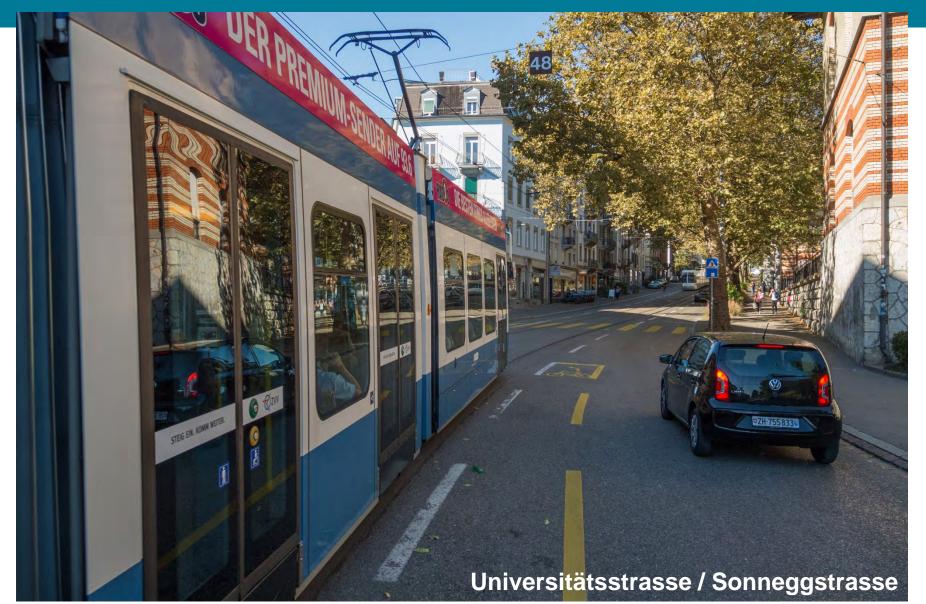

Conflict Point Identification with mixed lane

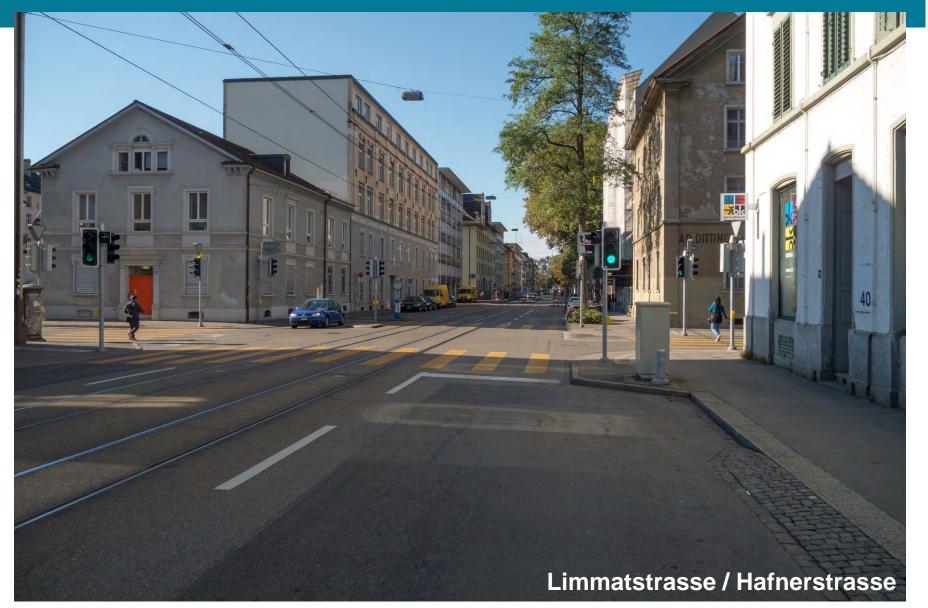


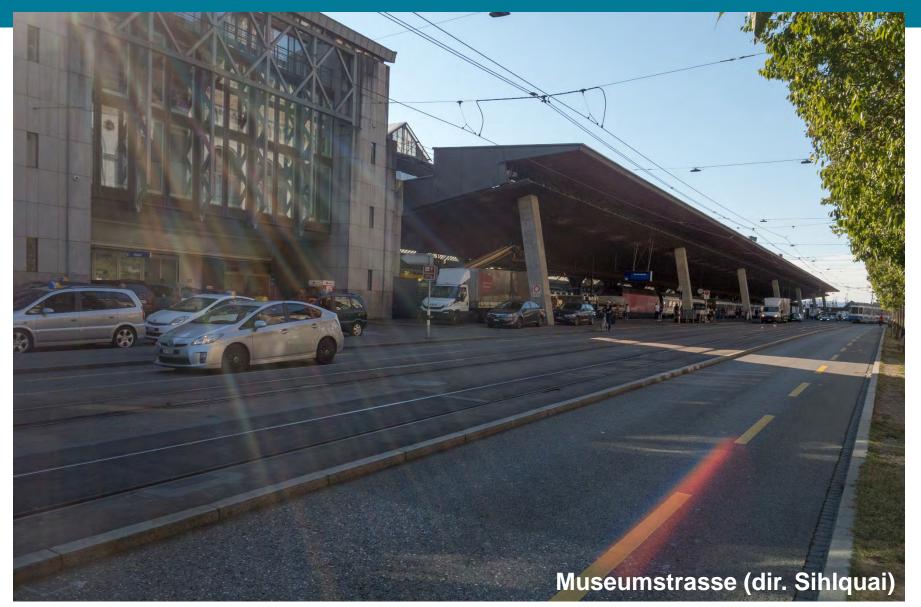












Part 3: Descriptive Data Analysis

Dependent variable	no. of left-turning car-tram collisions (collisions/5years)	0.1576
Traffic volume	car traffic volume on road with tramway (AAWT)	7927
	tram traffic volume (trams/h in peak)	26.02
Road type	car turning onto (yes=1, no=0)	
	main road	0.1929
	minor road	0.3985
	driveway, shop, gas station, parking, etc.	0.4073
Speed	modelled car speed on road with tramway (km/h)	43.15
	operational tram speed (km/h)	44.28
Tramway layout	tramway lane just before conflict point (yes=1, no=0)	
	separated, no violation possible (fence, high curb, etc.)	0.1955
	traversable separation (curb, grass track, etc.)	0.0517
	special texture, lines, marks	0.2219
	mixed use (lane separation as for cars)	0.5309
	lateral tramway position in road (yes=1, no=0)	0.0668
Intersection layout	left turn lane (yes=1, no=0)	0.1349
	angle of turning road relative to tramway (yes=1, no=0)	
	less than 60° (soft turn)	0.0467
	between 60° and 120° (approx. right angle)	0.8979
	more than 120° (sharp turn)	0.0555
Intersection control	traffic light (yes=1, no=0)	0.2585
	left turn restriction (yes=1, no=0)	0.1942
Road network	no. of intersections within 250m radius (along tram axis)	6.622
Tram network	within 80m of tram stop (yes=1, no=0)	0.4489
Road geometry	in curve with radius < 50m (yes=1, no=0)	0.0315

Left-Turning Car-Tram Collisions (2010-2014) vs. Conflict Point Rates

Characteristic	Basel	Zurich	Total	Zu/Ba
network length in km	84.5	82.4	166.9	0.98
mil. train revenue km (5 years)	48.2	65.6	113.8	1.36
left turning car-tram collisions (5 years)	32	93	125	2.91
left turning car-tram conflict points	247	546	793	2.21
conflict points / network km	2.92	6.63	4.75	2.27
conflict points / mil. revenue km (5 years)	5.12	8.32	6.94	1.62
collisions (5 years) / network km	0.38	1.13	0.75	2.98
collisions (5 years) / mil. revenue km (5 years)	0.66	1.42	1.10	2.14
collisions (5 years) / conflict points	0.13	0.17	0.16	1.31

Part 4: Regression Results

Variable	Poisson	NB (full)	NB (forward selection)	ZINB (full)	ZINB (forward selection)
count model:					
(Intercept)	-4.354 (1.99)*	-5.75 (2.017) **	-4.271 (1.184)***	-2.402 (2.946)	-2.382 (0.929)*
log_Q_car	0.083 (0.152)	0.179 (0.152)		-0.205 (0.196)	
log_Q_tram	0.684 (0.254) **	0.694 (0.253) **	0.612 (0.238)*	0.793 (0.389)*	0.646 (0.245) **
turning_onto2	-0.117 (0.332)	0.047 (0.344)	0.03 (0.312)	-0.413 (0.339)	
turning_onto3	-1.014 (0.43)*	-0.784 (0.426).	-0.767 (0.377)*	-0.234 (0.46)	
car_speed	-0.009 (0.016)	-0.012 (0.016)		-0.045 (0.017) **	
tram_speed	0.037 (0.017)*	0.042 (0.016) **	0.038 (0.014) **	0.072 (0.023) **	
lane_separation2	-0.024 (0.283)	-0.003 (0.279)		0.741 (0.353)*	
lane_separation3	-0.663 (0.664)	-0.625 (0.632)		-0.733 (0.664)	
lane_separation4	-0.293 (0.4)	-0.153 (0.395)		-0.232 (0.444)	
left_turn_lane1	0.927 (0.352) **	0.732 (0.366)*	0.62 (0.321).	1.258 (0.503)*	0.597 (0.295)*
light1	-0.345 (0.338)	-0.204 (0.337)		-0.141 (0.32)	
restriction1	-0.492 (0.376)	-0.521 (0.35)	-0.567 (0.325).	-1.608 (0.43) ***	-0.674 (0.326)*
Intersections	-0.022 (0.033)	-0.004 (0.032)		-0.036 (0.04)	
stop1	-0.956 (0.254) ***	-0.847 (0.25) ***	-0.863 (0.245) ***	-0.912 (0.35) **	-0.848 (0.238) ***
angle1	-0.854 (0.363)*	-0.775 (0.417).	-0.845 (0.402) *	0.197 (0.436)	-0.839 (0.38)*
angle2	-0.653 (0.502)	-0.611 (0.561)	-0.702 (0.544)	-0.725 (0.45)	-0.741 (0.512)
curve1	-0.899 (1.234)	-0.737 (1.056)		-1.468 (1.067)	· · · · ·
lateral1	0.329 (0.493)	0.274 (0.49)		-0.361 (0.706)	
zero model:	š /	× • •		· · · · ·	
(Intercept)				3.457 (6.975)	11.136 (3.77) **
log_Q_car				-0.86 (0.445).	-0.81 (0.35)*
log_Q_tram				0.143 (0.947)	
turning_onto2				-1.25 (0.867)	-1.406 (1.252)
turning_onto3				0.998 (1.098)	1.354 (1.121)
car_speed				-0.108 (0.04) **	
tram_speed				0.104 (0.067)	-0.109 (0.046) *
lane_separation2				1.793 (0.946).	
lane_separation3				-1.178 (2.998)	
lane_separation4				-0.438 (1.279)	
left_turn_lane1				2.168 (1.364)	
light1				-0.57 (0.858)	
restriction1				-5.836 (3.236).	
Intersections				-0.011 (0.094)	
stop1				-0.105 (0.768)	
angle1				3.975 (1.542)**	
angle2				-17.29 (2288.152)	
curve1				-17.462 (4120.734)	
lateral1				-1.519 (1.682)	

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Variable	Poisson	NB (full)	NB (forward selection)	ZINB (full)	ZINB (forward selection)
Θ		0.593 (0.203)	0.578 (0.197)	3.833e+4 (1.057e+59)	1.031 (1.672)
Goodness of fit:					
11	-338	-327	-330	-308	-325
AIC	714	694	682	695	676
R ²	0.124	0.081	0.073	0.134	0.088
R_{adj}^2	0.075	0.028	0.045	0.027	0.054
			*** for a p-value below 0.001. ** for		

The significance codes for the z-test of the model coefficients are the following: *** for a p-value below 0.001, ** for a p-value below 0.01, * for a p-value below 0.05, and . for a p-value below 0.1

Part 5: Discussion and Conclusions

Conclusions

- Caution with inference; models have important limitions:
 - no turning car traffic volume data
 - non-negligible correlation between predictors
- More precise data could improve predictive power, (leftturning traffic volumes, signal type and synchronization, intersection geometry)
- Low R² → important portion of variability in the data is not explained by the predictors
 - left turning car-tram collisions not only depend on infrastructure and operational factors: drivers' and vehicles' characteristics matter, as well as accident circumstances such as weather or time of day

Conclusions

- Costly analysis, limited predictive power: is it worth it?
- On the other hand: until now, these relationships have not been examined statistically, it was "only" expert knowledge...
- Other countries have better data!
- Thinking about layout trade-offs offers new insights (mixed section vs. more conflict points, speed vs. accident frequency) – operation vs. safety?

Thank you

Sources and Acknowledgments

The research has been conducted by Seraina Tresch as part of her Master Thesis at ETH Zurich, supervised by U. Weidmann, A. Toletti, and C.M. Marti.

Accident data: Bundesamt für Strassen ASTRA, Strassenverkehrsunfall-Statistik Network load: Timetables 2015 GIS analysis conducted with QGIS, Version 2.12.3 Statistical analysis conducted with RStudio Photographs: C.M. Marti