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Road operators are using Intelligent Transport Systems composed of road side cameras for traffic management. The artificial 
vision algorithms used for automatic detection may be impacted by adverse weather conditions. Therefore, it is necessary to 
improve these algorithms in such conditions. In addition, the applications developed to operate in road context impose a 
perfect reliability of operation including in adverse weather conditions. There are many works that allow weather 
classification but they do not take into consideration all the degraded conditions. In this paper, we propose a method based 
on convolutional neural networks to classify adverse weather conditions from a road camera. This method could be extended 
to on-board cameras used by autonomous vehicles. We also present the weather image databases that we use to evaluate 
our learning. 

1. Introduction 

ITS are usually used in favourable weather conditions 

where they show their performance and reliability. But it 

turned out that vision systems such as video surveillance and 

advanced driver-assistance systems (ADAS) are generally 
affected by the degradation of weather conditions (fog, heavy 

rain, etc.) due to limited visibility and reduced image quality 

[1], [2]. Autonomous driving is a national and european topic 

[3], [4] and it will requires research and inovation on the 

specific use cases, critical for safety as adverse weather 

conditions. The French project “Nouvelle France Industrielle 

Véhicule Autonome” dedicated to autonomous vehicles is 

focused on the study of road security and operating safety for 

autonomous vehicles and has shown that input data such as 

sensors, maps, and signs are insufficient to ensure road safety. 

Also, the methods and the tools of design and operating safety 

are insufficient where they meet limitation of performance 
and uncertainties of detection or recognition, localization and 

navigation. Finally, the existing simulation methods and tools 

do not take into account the particular issues of operating 

safety. 

In order to optimize the vision systems performance, 

it is necessary to have a reliable detection system for the 

presence of adverse weather conditions.  

There are dedicated meteorological sensors for 

physical measurement, but they are expensive. As cameras 

are already installed on the road, they can be used to satisfy 

two functions at once: image acquisition and physical 
measurement instead of dedicated weather sensors. This is the 

aim of our study "Weather classification with traffic 

surveillance cameras".  

There are some works that distinguish between 

different weather conditions which are based on extracting 

image features or using image descriptors. In a road context, 

vision systems are generally based on cameras having a final 

function such as obstacle detection, in the case of on-board 

cameras, or automatic detection of incidents, in the case of 

road cameras. These cameras use image descriptors. The 

latter can be disturbed by adverse weather conditions. In this 

case, it will be interesting that the cameras can self-diagnose. 

In [5], [6] the authors explain this idea. Indeed, if there are 

descriptors sensitive to the rain or the fog and which are used 

in a final function, and if in addition the cameras know how 
to measure the quantity of the present meteorological 

perturbation, they signify that there is a disruption of the final 

function (eg pedestrian detection for on-board cameras). In 

[7], [8], [9] the authors measure rainfall intensity by artificial 

vision systems using segmentation. Indeed, by doing a 

background extraction and comparing successive images, 

they manage to detect moving objects. If these movements 

are regular and in the same way, it must be rain. In this case, 

they can measure the rain. 

Other works classify the weather but with a limited 

number of classes. The authors of [10] categorize two weather 

classes sunny and cloudy using weather dataset containing 
10,000 single images. They are based on the extraction of 

weather cues for classification, such as sky, shadow, 

reflection, contrast and haze. They used collaborative 

learning to successfully classify weather which is based on 

homogeneous voters. On the other hand, in [1] the authors 

classify weather according to 3 classes in order to recognize 

the different intensities of rain: clear, light rain and heavy rain. 

They use a database containing 500,000 single monoscopic 

color images from in-vehicle camera. They propose a method 

that gathers several histogram features in a vector such as 

brightness, contrast, sharpness, saturation and hue and make 
classification with linear SVM. Also, the authors of [2] used 

3 classes of weather: sunny, cloudy and rainy to classify 2496 

images acquired from video captured by vision system in 

vehicle. They are based on local and global descriptors such 

as HSV, HGA and Road. They use Real AdaBoost as 

classifier. 

Although previous works have proposed interesting 

solutions in weather classification, they do not take into 

consideration all possible weather conditions including fog or 

night conditions. 
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Fig. 1 The Cerema's Fog&Rain R&D platform [22] 

Interested by the success of convolutional neural 

networks (CNN) in the field of vision and more precisely in 

image classification and recognition [11], [12], [13], [14], [15] 

we adapted the deep learning method to solve the problem of 

weather classification. In [16] the authors used CNN and did 

learning on the same database as [10]. The authors of [17] 

predict the ambient temperature, the season, the month, the 

week and the day from a given image. The learning is done 

on AMOS database [18] which contains over one million 
images acquired from different webcams located everywhere 

in the world. [19] classifies weather according to 4 classes 

sunny, rainy, snowy and haze using MWI database which 

contains 20 000 images of different outdoor scenes. The 

authors used multiple category-specific dictionary learning 

and multiple kernel learning and extracted local features such 

as sky, shadow, rain streak, snowflake and dark channel and 

global descriptors such as contrast and saturation. 

In this paper, we will deal with, in addition to normal 

conditions, the case of rain and fog. Our study takes into 

consideration the day and the night. In order to evaluate our 
learning and labelling strategy, we create a large database of 

images acquired by a road camera and dedicated sensors for 

meteorological measurements.  

The key contribution of this paper is the learning 

transfer method [20]. Indeed, this method could be useful for 

ITS applications. It involves using input data from a certain 

space to train a CNN and allows the weather classification in 

another space containing different input data to the first one. 

In this case, if learning transfer is done successfully, we can 

classify weather on sites that do not contain weather sensors 

by using only road cameras. 

The next section presents a description of two weather 
databases that will be used for our experiments. In section 3, 

the used convolutional neural network is presented. Section 4 

showed detailed experimental classification results obtained 

on our weather databases. Finally, we conclude the paper in 

section 5. 

2. Datasets 

2.1. Technical settings 
Our two databases are acquired on two different areas. 

The first one called Cerema's Fog&Rain Research & 

Development platform [21], [22] (see Fig. 1). It is the only 

place in Europe producing controlled adverse weather 

conditions such as rain and fog. This is a 31-meter long 

platform divided into two parts: a tunnel (15 m length and 5.5 

m width) of durable construction and a greenhouse (16 m 

length and 8.5 m width) of lightweight construction, 

maintained by two arches and covered by two sheets, one 

black and one transparent (to provide night-time and daytime 

conditions respectively). This platform is equipped with 

several sensors. The meteorological visibility distance is 
measured with the Degreane Horizon TR30 transmissometer 

(see Fig. 2.c). This sensor allows the measurement of the 

meteorological visibility over the measurement range useful 

for the road context (between 5 m and 1 000 m). Rain 

intensities are measured using the LSI DQA136 tipping 

bucket rain gauge and the OTT Parsivel optical disdrometer 

(see Fig. 2.a and Fig. 2.b) which measures rainfall intensities 

between 0.001 mm/h and 1200 mm/h. The database was built 

using Sony DFW-X700 camera with a resolution of 1024 x 

631 at a frequency of 7.5Hz. The camera was positioned 120 

centimetres above the ground, which corresponds to a driving 
situation. 

  

Fig. 2 Weather condition measurement sensors. (a) OTT 

Parsivel optical disdrometer, (b) LSI DQA136 tipping 

bucket rain gauge, (c) Degreane Horizon TR30 

transmissometer, (d) Vaisala PWD12 weather sensor. 

The second area is called Fageole highway on the E70 

motorway which belongs to “Direction interdépartementale 

des routes Massif-Central” (see Fig. 3). It is an outdoor site 

that contains weather sensors such as the Precis Mecanique 

3039 tipping bucket rain gauge which measures rainfall 

intensities between 0.1 mm/h and 1000 mm/h and the Vaisala 

PWD12 weather sensor (see Fig. 2.d) which makes it possible 
to measure the visibility between 10 m and 2 000 m. The 

database was created by AVT Pike F421B camera with a 

resolution of 1008 x 648. It is positioned 4.5 m above the 

ground. 

 

 

Fig. 3 Fageole highway weather station on the E70 

motorway 

     (a)                     (b)                  (c)                   (d)  
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2.2. Cerema-AWP Database 
The Cerema Pedestrian database [23] which will be 

called Cerema-AWP database (Cerema Adverse Weather 

Pedestrian database) has taken place at the first time for 

pedestrian detection. But since it contains different weather 
conditions, we take it into account for our study. It is a 

weather image database consisting of 62,828 images acquired 

at Cerema's Fog&Rain R&D platform [21], [22]. This 

database is divided into 10 sets acquired by day and by night. 

For these both conditions, there are 2 rain intensities and 2 

fog densities. 

For day light fog (DF1) and day heavy fog (DF2) the 

visibilities are respectively between 70 m and 80 m and 

between 50 m and 60 m. For day light rain (DR1) and day 

strong rain (DR2) rainfall intensities are respectively between 

20 mm/h and 30 mm/h and between 40 mm/h and 50mm/h.  

The distributions of rain and fog intensities are 
described in Fig. 5. 

 

 
              (a)                                              (b) 

Fig. 5 The distribution of fog visibilities (a) and rain 

intensities (b) on the Cerema-AWP Database 

 

2.3. Cerema-AWH Database 
The Cerema-AWH database (Cerema Adverse 

Weather Highway database) contains today more than one 

million images, acquired on the Fageole highway during day 

and night. The images are in grey scale. In our study, we will 
use about 340K images acquired between February 2, 2017 

and May 6, 2017. Labelling is done automatically by 

associating each image with the corresponding weather data. 

These data are recorded from the meteorological sensors 

located on the Fageole highway. 

The weather conditions presented in the database are: 

rain, fog and snow. Some example images from each 
condition are shown in Fig. 7. These conditions are real 

conditions (unlike those of Cerema-AWP Database [23] 

which are simulated). The rainfall intensities used in our 

experimentations vary between 2 mm/h and 90 mm/h but 

Fig.7.a presents only intensities between 0 mm/h and 20 

mm/h. The fog visibilities studied vary between 50 m and 400 

m (see Fig. 7.b).  

 

 
(a) 

 
 (b) 

Fig. 6 The distribution of rain intensities (a) and fog 

visibilities (b) on the Cerema-AWH Database 
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Fig. 4 A selection of images from the Cerema-AWP database under different conditions. Day conditions and night 

conditions. From left to right: Normal conditions, Fog 1, Fog 2, Rain 1, Rain 2 [23]. 
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3. Convolutional neural networks 

We use the LeNet-5 [24] for our convolutional neural 

network. It was one of the first convolutional neural networks 

that helped propel the field of deep learning. It has been 

designed by Yann LeCun since 1998 [24]. At that time, 

LeNet-5 architecture was used primarily to recognize 

numbers and applied to the recognition of handwritten 

numbers on checks. 

In general, LeNet-5 architecture contains a 

convolution layer followed by a pooling layer, another 

convolution layer followed by a pooling layer, and then two 
fully connected layers similar to conventional multilayer 

perceptrons (see Fig. 8). 

We will use a slightly different version of the original 

LeNet-5 implementation, replacing sigmoid activations with 

rectified linear unit (ReLU) activations for neurons to 

enhance training. Indeed, in all experiments, researchers 

found that networks based on rectified linear units performed 

better than networks with sigmoid-type activation functions 

[25]. Most deep learning algorithms try to achieve model 

optimization. This optimization is done by minimizing the 

error or the loss function using the gradient method. 

The gradient method makes it possible to modify each 
time the weights of the neurons. Indeed, the neural network 

is composed of a succession of layers, each one takes its 

inputs on the outputs of the previous one. Each layer (j) is 

composed of 𝑁𝑗  neurons, taking their inputs on the 𝑁𝑗−1 

neurons of the previous layer. Each synapse is associated with 

a synaptic weight so that the 𝑁𝑗−1  are multiplied by this 

weight, then added by the level j neurons, which is equivalent 

to multiplying the input vector by a transformation matrix. 

The output associated with the inputs 𝑥1 to 𝑥𝑛  is 

written in the equation (1).  

 

𝑜 = 𝜑 ( ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+  𝑏)               (1)  

 

 where n is the number of inputs, φ is the activation function 

and b is the bias. 

Neural networks often use a gradient descent on 

weights. This means at each iteration, the backpropagation 

calculates the derivative of the error (also called the loss 

function) with respect to each weight and subtract it from that 
weight. Indeed, we try to minimize L(W) where W is the 

parameter vector which includes weights and the classical 

gradient method is written in (2). 

 

𝑊𝑡+1 = 𝑊𝑡 − 𝜌𝐿(𝑊𝑡)           (2) 

 

where 𝜌 > 0 is the step of the iterative gradient method. 

However, following this equation, the weights will 

change too much at each iteration, allowing the error to 

increase or diverge. In practice, researchers typically multiply 
each derivative by a small value called the learning rate 

before subtracting it from its corresponding weight. This sets 

up the stochastic gradient descent (SGD). 

In other words, the stochastic gradient descent updates 

the weights W by a linear combination of the negative 

gradient ∇L(W) and the update of the previous weight 𝑉𝑡 . The 

learning rate α is the negative gradient weight. The 

momentum μ is the weight of the previous update. 

Formally, we have the following equations (3) and (4) 

to calculate the updated value 𝑉𝑡+1 and the updated weights 

𝑊𝑡+1 at the t + 1 iteration, given the previous weight update 

𝑉𝑡  and current weights 𝑊𝑡 . 

 

𝑉𝑡+1 = 𝜇𝑉𝑡 − 𝛼∇L(𝑊𝑡 )     (3) 

𝑊𝑡+1 = 𝑊𝑡 − 𝑉𝑡+1             (4) 

 

In the solver parameters, the learning rate is variable 

and decreases with each iteration according to the following 
equation (5). 

𝛼 = 𝛼0 (1 + 𝛾𝑛)−𝑝           (5) 

 

 

Fig. 7 A selection of images from the Cerema-AWH database under different conditions. Day conditions (a) and night (e) 

conditions. Light fog (b) and heavy fog (f). Light rain (c) and heavy rain (g). Light snow (d) and heavy snow (h). 
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where n is the current iteration and the hyper-parameters: 

learning rate 𝛼0, gamma γ and the power p are to be defined 
in the solver. 

4. Results and experiments  

In this section, we will present our method and report 

the classification results obtained. We will use the two 

weather databases as described in the section 2.  

We use Caffe Deep Neural Network tool [26] for 
training and testing all our experiments. We run them in 

Python code on a GPU of GeForce GTX 1080 with 8G RAM. 

 

4.1. Classes number influence 
In this part, we will study the influence of the number 

of classes on the classification accuracy.  

For the first test, we have done the classification 

according to 4 weather classes: day fog (DF), day rain (DR), 

day normal conditions (DNC) and night normal conditions 

(NNC). Normal conditions are included to provide a 

reference state for measuring only the impact of degraded 

conditions.  
For DF we chose images with visibility less than 400m. 

For DR rainfall intensity is greater than 2 mm/h. For DNC 

and NNC, the visibility is higher than 1000 m.  

For the day conditions, the images are acquired 

between 8 am and 5 pm, and for the conditions of night, the 

images are acquired between 10 pm and 6 am.  

The learning database contains 12 000 images and the 

testing database contains 1200 images. We have an equal 

amount of images for each class. 

In order to have reliable classification results, we 

ensured that no image is used for both training and testing 
databases. For this, we have used, for the learning one, images 

acquired during the even days and for the testing one, images 

acquired during odd days. 

The learning is done with 20 000 iterations with a 

learning rate 𝛼0 set to 0.01 and a gamma 𝛾 set to 0.001. The 

momentum 𝜇 is set to 0.9 and weight decay to 0.0005.  

For input data, we used 28x28 contrasted patch. It is a 

part of the roadway containing the black road and a white 

marking (Fig. 9).  

We execute 10 rounds and report the higher 
classification accuracy which is equal to 99.7 %.  

As our initial aim is measuring weather by camera for 

classification, we thought to refine the classification and 

increase the number of classes. In this case, for the 2nd test, 

the classes correspond to weather situations are C = {DF1, 

DF2, DR1, DR2, DNC, NNC} which contain 2 fog densities 

(DF1 and DF2) and 2 rain intensities (DR1 and DR2). 

Based on the distribution of fog visibilities (Fig. 6.b) 

and rainfall intensity (Fig. 6.a) in the Cerema-AWH database, 

we have chosen the characteristics of the 4 weather classes. 
For light fog (DF1), the visibilities vary between 150m and 

400m. For heavy fog (DF2), visibilities vary between 50m 

and 150m. Light rain (DR1) contains intensities between 2 

mm/h and 4 mm/h and heavy rain (DR2) intensities are 

greater than 4 mm/h. 

 

 

 

Fig. 9 The contrasted patch (size 28 x 28) 

 

In total there are 24 000 images, learning base 

contains 16 000 images and testing database contains 8 000 

images. To be able to compare the two tests, we used the same 

learning parameters.  

Despite the difficulty of the task, CNNs perform well 

in weather classification, it achieves 77.0 % of classification 
accuracy for a more detailed classes. 

We note that for a rough classification (4 weather 

classes) we have a very good classification accuracy. On the 

other hand, if we think to make a more refined classification 

(6 weather classes) we will have less good accuracies. In this 

case, we must improve these last results. It will be the aim of 

future work by using other networks, or greater number of 

layers. 

 
4.2. Hyper-parameters influence 

In this part, we will study the influence of changing of 
learning parameters on the classification results. To do this, 

we will apply each time a couple of learning rate and gamma. 

We test 3 different 𝛼0  values in equation (5), i.e., {0.001, 

0.005, 0.01} and 4 different γ values in the same equation, i.e., 

{0.0001, 0.001, 0.01, 0.1}. 

 

Fig. 8 LeNet-5 Convolutional Neural Network Architecture [24] 
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We started learning with different hyper-parameters 

couples on the Cerema-AWH database with 4 and 6 weather 

classes. Fig. 10 shows classification accuracy for each value 

of learning rate and gamma. For each couple of hyper-

parameters, we execute 10 rounds and report the higher 

classification accuracy. 

 We notice that the more we increase the learning rate 
the more we increase the accuracy. On the other hand, the 

more one decreases the gamma the more we increase the 

accuracy.  

For the same couple of parameters, we have the same 

behaviour for both tests. In this case, we can fix the couple 

with which we will follow our learning. Also, we must avoid 

working with low learning rate and high gamma. 

 

 
 (a) 

 

 
 (b) 

Fig. 10 Results of learning with different hyper-parameters 

couples on Cerema-AWH database. (a) 4 weather classes 

and (b) 6 weather classes  

 
4.3. Learning transfer 

In the previous parts, we have done the weather 

classification on the Cerema-AWH database and we obtained 

good results.  

For that, we thought to use another database with other 

characteristics. Learning and testing on the same database is 

a good idea and has worked well. But what about using two 
databases at the same experiment?  

In this part, we will learn on the Cerema-AWP 

database (Section 2.1) and test on the Cerema-AWH database. 

It is the learning transfer. 

We will apply the CNN to classify each image into one 

of the classes C = { DF, DR, DNC, NNC}, during 20 000 

iterations, with a learning rate 𝛼0 set to 0.001 and a gamma 

𝛾 set to 0.001. The momentum 𝜇 is set to 0.9 and weight 

decay to 0.0005. 

For the input data, we have chosen similar patches of 

size 28x28 (see Fig. 11) so that the neural network only takes 

into account the change in adverse weather conditions. The 

images of the training database are randomly shuffled before 
feeding the CNN. 

 

      
(a)                     (b) 

Fig. 11 Similar Patch images. Train patch from Cerema-

AWP Database (a) and Test patch from Cerema-AWH 

Database (b)  

 

We learn and we get a classification accuracy of 

65.7 %. It is noted that the accuracy is worse compared to the 

one obtained on the Cerema-AWH database for 4 weather 

classes (99.7 %). 

We investigate the classification results in Table 1 in 

more detail to find out which weather conditions are miss-

classified.  
 

 DF DNC NNC DR 

DF 2 506 18 0 1 492 

DNC 0 1 406 67 4 

NNC 0 1 3 616 0 

DR 1 194 2 275 12 2 204 

 

Table 1 Classification results at 20K iterations on 14 795 

images with accuracy of 65.7 % 

 

Table 1 shows the confusion matrix of the 4 weather 

classes of the learn transfer from Cerema-AWP database to 

Cerema-AWH database. We can see that 1194 images of DF, 

2275 images of DNC and 12 images of NNC are predicted as 

DR. Also there are 1492 images of DR are recognized as DF. 

So it is clear that the CNN has a problem with the 

classification of day rain (DR). 

 For that, we check rain images misclassified. It turned 

out that for the Cerema-AWH database, the raindrops stick 

on the lens of the road camera, unlike the rain images 
acquired at the Cerema's Fog&Rain R&D platform. 

Following this problem, we omit rain images from the 

two databases to better compare them and we run tests again. 

In this case, and with 3 weather classes C = {DF, DNC, NNC}, 

we obtained a classification accuracy of 96.8 %. 

Despite all the following differences: 

 the Cerema-AWP database contains images 

acquired in an indoor site (Cerema's Fog&Rain 

R&D platform) and the Cerema-AWH database 

contains images acquired in an outdoor site, 

 the Cerema-AWP database contains simulated 
weather conditions and the Cerema-AWH database 

contains real conditions, 

 the fog visibilities in the Cerema-AWP database 

vary between 50m and 80m and the fog visibilities 
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in the Cerema-AWH database vary between 50 m 

and 400 m, 

we managed to have a good classification accuracy of 96.8 % 

by the learning transfer method. 

5. Conclusion 

In this work, we present a two weather databases 

Cerema-AWP database and Cerema-AWH database 

containing respectively indoor and outdoor images acquired 

under adverse weather conditions with an automatic labelling 

of images. We present an approach that is able to distinguish 

between 4 and 6 types of weather based on Convolutional 

neural networks and our experimental results achieves a high 
classification accuracy of more than 99.0 % for the distinction 

between 4 weather classes. CNNs proved that they are 

successful in turning a camera into weather sensors. Similarly, 

we present results of the learning transfer method between 

two different databases. The results that we achieved proved 

that this method can be effective and used in many ITS 

applications.  

We expect better performance in the future by adding 

other weather conditions like snow. Improvements of the 

overall classification results could be achieved by applying 

other CNNs architectures like VGG or ResNet. We can also 

use recurrent neural networks that take into account the 
weather for classifying video sequences which can be 

interesting for video surveillance. 
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