





# Expérimentation de la poutre VIPP de Clerval

## Opérations de renforcement par matériaux composites collés

A. Gagnon, C. Le Roy, J. Roth DTer CE, DL Autun, MSCC

#### **Sommaire**

- → Les matériaux composites
- → Phasage et objet des travaux
- → Réparation du talon de la poutre
- → Mise en place du renforcement
- → Instrumentation du renforcement
- → Conclusion



## Les matériaux composites

# Polymer Matrix Fiber

Un composite

Deux principaux systèmes utilisés en génie civil

#### Un assemblage fibres + matrice

#### Fibres:

- assurent la rigidité et la résistance du matériau (propriétés mécaniques élevées),
- plusieurs types de fibres : carbone, verre, kevlar, etc...

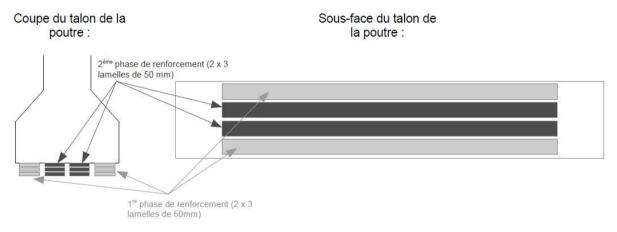
#### Matrice:

- rôle de protection des fibres, de répartition et de transmission des contraintes au sein du matériau,
- incidence sur la mise en œuvre et sur certaines propriétés (tenue au feu, etc...)



Plat pultrudé




Tissu sec



## Phasage et objet des travaux

#### 2 phases de renforcement à la flexion par lamelles de fibres de carbone (plats pultrudés) :

- 1ère phase, avant la réalisation des essais de chargement jusqu'à fissuration maîtrisée,
- 2nde phase, avant la réalisation des essais de chargement à rupture.



#### Travaux réalisés :

- épreuve de convenance, mise en œuvre sur une zone test pour vérification des moyens et des méthodes de l'entreprise,
- réparation et préparation du support béton :
  - réparation des zones dégradées du béton d'enrobage
  - injection des fissures longitudinales en talon
  - préparation de surface par ponçage,
- 1ère phase de renforcement en bords de talon, collage de 2x3 lamelles continues sur 24 m,
- essais de chargement jusqu'à fissuration maîtrisée,
- 2nde phase de renforcement en zone centrale du talon, collage de 2x3 lamelles de 24 m.



## Réparation du talon de la poutre

#### Défauts présents :

- → défauts de planéité
- → zone de forte dégradation du béton d'enrobage (câbles de précontrainte corrodés voire rompus apparents)
- → présence de plaques métalliques longitudinales centrales et transversales générant un relief en creux du béton
- → défauts locaux de type éclat de béton, armatures apparentes
- → fissures longitudinales.











## Réparation du talon de la poutre



Réparation de surface au moyen d'un mortier structural de type CC de classe R4



**Avant** 

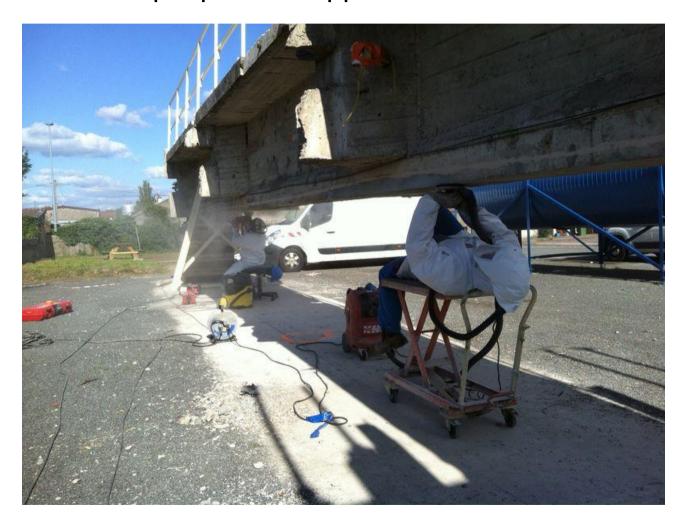
**Après** 



## Réparation du talon de la poutre



Injection des fissures au moyen d'une résine époxy à prise lente








## Préparation du talon de la poutre

Préparation de surface par ponçage avant chaque phase d'application du renforcement





Traçage de l'emplacement du renfort composite



#### Préparation de la lamelle :

- Ponçage
- Dégraissage





Vérification des conditions de température et d'hygrométrie







T<sub>résine</sub> ≈ 20°C



Double encollage sur la lamelle sur le support







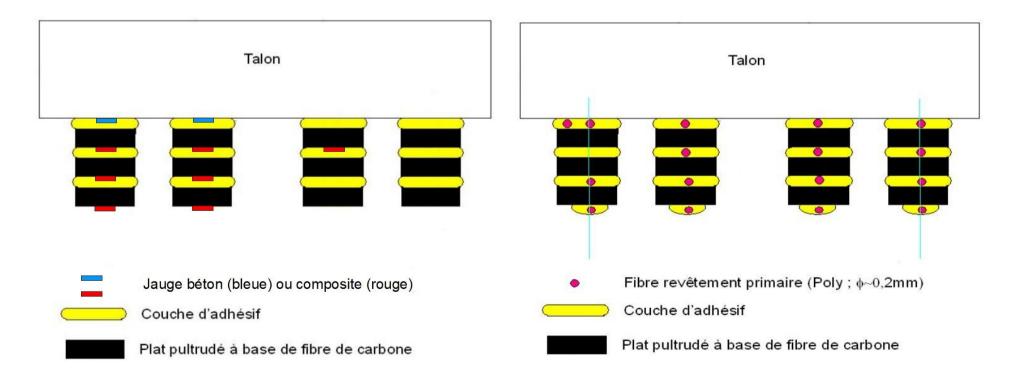
**Application** 



Marouflage



Raclage

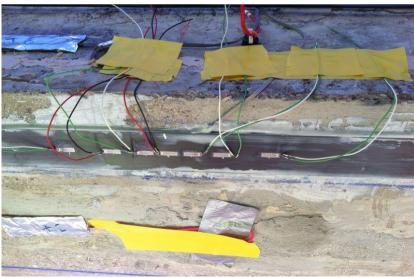





#### Instrumentation du renforcement

#### 2 types d'instrumentation du renforcement par composites collés :

- Jauges de déformation au droit de sections définies : 107 jauges
- Fibres optiques (Ø 200 μm) dans le joint de colle entre les différentes couches de lamelles : 16 fibres optiques






#### Instrumentation du renforcement











#### Conclusion

- → Réparation et préparation de surface primordiales pour une bonne efficacité du renforcement
- → Renforcement à la flexion en 2 phases (bords talon et centre), au total 4 bandes de près de 24 m de 3 lamelles superposées chacune
- → Renforcement délicat en raison de la présence d'instrumentation sur la poutre, sur les lamelles et dans les joints de colle









#### Merci de votre participation

Jérémy Roth – Cerema DTer CE DL Autun jeremy.roth@cerema.fr 03 85 86 67 25

Corentin Le Roy – Cerema DTer CE DL Autun corentin.le-roy@cerema.fr 03 85 86 67 41

Arnaud Gagnon – Cerema DTer CE DL Autun arnaud.gagnon@cerema.fr
03 85 86 67 43