

Investigations sur les enrochements en place dans les ouvrages

Auteur: Marc IGIGABEL, Cerema, Direction Technique Eau mer et fleuves

Introduction

- Investigations menées en vue d'un diagnostic
- Objectif : sur la base d'un état de référence,
 - conclure sur les évolutions perceptibles,
 - rechercher les causes possibles et les traitements envisageables.
- Nécessité d'une approche pragmatique tenant compte des contraintes opérationnelles.
- Possibilités offertes par les moyens actuels d'investigation ?

Plan de la présentation

- Cadrage des investigations par quelques principes essentiels
- Observation du mouvement des blocs hors d'eau et sous eau
- Méthodes de diagnostic visant à caractériser
 l'état des blocs

Cadrage des investigations par quelques principes essentiels

Principe n°1 : caractériser précisément les enjeux associés à l'inspection

- Apprécier l'évolution de l'ouvrage dans le temps
 - premier phénomène de tassement et d'imbrication peu après la fin de la construction
 - puis les changements les plus visibles se produisent à l'occasion des périodes de fortes tempêtes
 - Néanmoins ne pas négliger les évolutions lentes quotidiennes... Elles peuvent préparer le terrain pour des évolutions rapides

Principe n°1 : caractériser précisément les enjeux associés à l'inspection

- Interpréter les observations en modes de défaillance : érosion externe, érosion interne et instabilités (y compris les tassements de l'ouvrage et de ses fondations)
 - Un déplacement et/ou une détérioration des enrochements engendre une érosion externe éventuellement accompagnée d'instabilité.
 - Inversement, une instabilité de tout ou partie de l'ouvrage ou de ses fondations occasionnera un déplacement des enrochements (mais plus rarement leur détérioration).

Principe n°2 : apprécier les difficultés techniques d'observation

- accessibilité limitée :
 - hors d'eau ou dans la zone de marnage
 - pente, taille des blocs et algues en font un terrain difficilement praticable
 - sous eau
 - nécessité de disposer de moyens nautiques et de moyens d'observation subaquatiques.
- La végétation terrestre peut également limiter l'accès.

Principe n°2 : apprécier les difficultés techniques d'observation

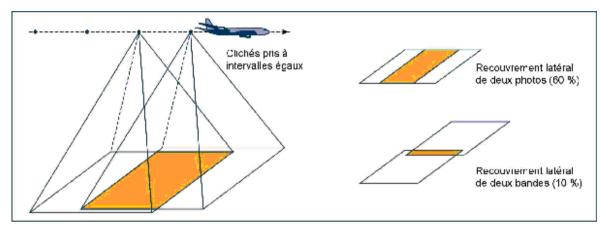
- Deux caractéristiques très pénalisantes lorsqu'il s'agit de comparer l'état d'un ouvrage à un état de référence antérieur :
 - Irrégularité des enrochements
 - Mobilité des enrochements

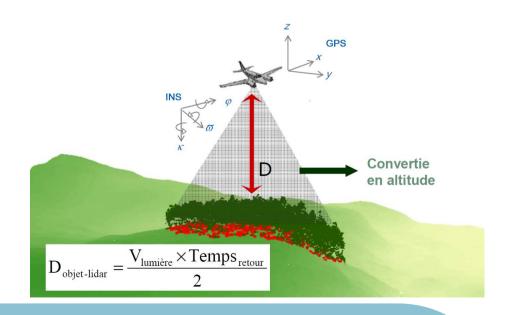
Principe n°3 : proportionner les moyens déployés aux enjeux de l'ouvrage

- Deux stratégies d'investigation suivant l'enjeu de l'ouvrage et les tolérances sur son évolution
 - une inspection visuelle destinée à la connaissance de la forme générale de l'ouvrage et de l'état des enrochements (+ des levés topographiques ponctuels)
 - un suivi précis du mouvement et de l'état des enrochements
- La deuxième stratégie complète mais n'exclut pas la première

Observation du mouvement des blocs hors d'eau

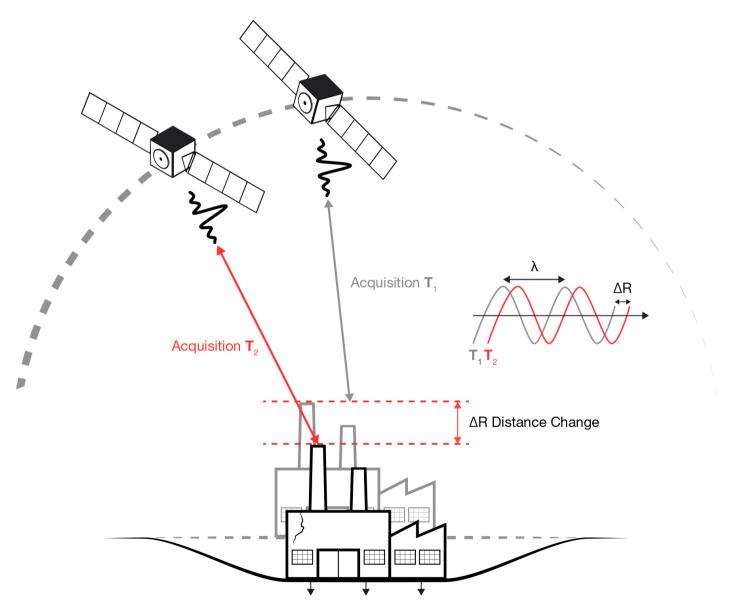
Topographie surfacique des enrochements hors d'eau


 A mettre en œuvre si nécessaire en complément des levés ponctuels ou des levés de profils...

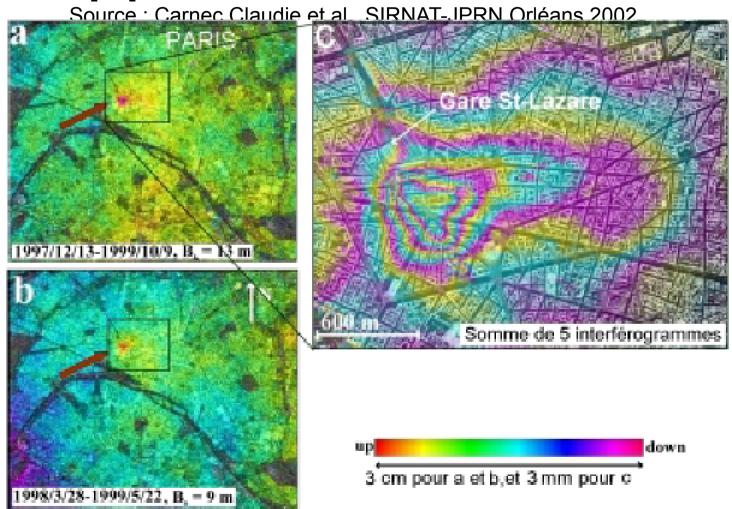


Deux techniques principales

 La photogrammétrie numérique



 LiDAR (Light Detection And Ranging) ou lasergrammétrie



Une technique complémentaire L'interférométrie radar

Interférométrie radar : Application sur Paris

Photogrammétrie numérique

- Traditionnellement les photographies sont prises à partir d'avions ou d'hélicoptère
- Couverture de grandes étendues sans difficulté pour la navigation aérienne.

Utilisation des drones pour la photogrammétrie

Avantages :

- Accès à de nouveaux points de vue,
- rapidité de mise en œuvre,
- réduction des coûts,
- élimination des risques de mise en danger de vies humaines.
- Application pour la surveillance d'ouvrages particuliers.

Exemples d'application...

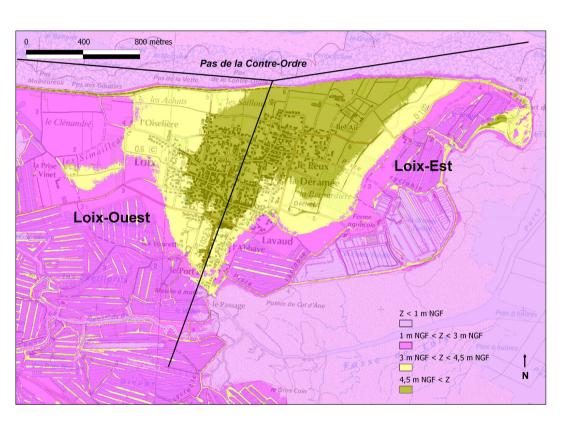
Suivi des brise-lames de Saint-Jean de Luz

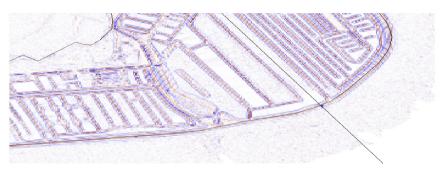
Source: Yoann Jobart et al., Congrès SHF: «Drones et hydraulique», Paris, avril 2015

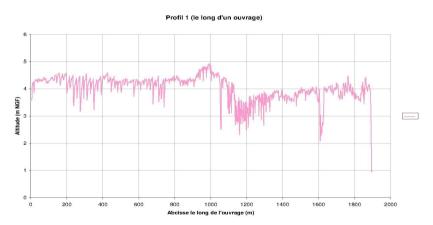
- Deux techniques d'investigation
 - L'interférométrie radar pour appréhender
 - le comportement global des deux digues
 - la stabilité de leurs fondations ainsi que des différentes parties de ces ouvrages.
 - La photogrammétrie par drone pour
 - une reconstruction 3D de l'ouvrage
 - l'identification de fissures structurelles de grande amplitude (résolution centimétrique)
 - l'identification formelle des blocs de rechargement, dont certains ont été colorisés pour faciliter leur discrimination dans le temps

Application sur les brise-lames de Saint-Jean de Luz

Source: Yoann Jobart et al., Congrès SHF: «Drones et hydraulique», Paris, avril 2015







Exploitation de levé Lidar sur enrochements

Le levé Lidar pour les enrochements

- Permet de pénétrer la végétation, afin de « voir » ce qu'il y a en dessous
- Les systèmes LIDAR sont lourds (20 à 100 kg) et doivent donc être embarqués à bord d'avions ou d'hélicoptères. Peu rentable pour les petites zones d'arpentage (de moins de 100 hectares)
- Développements en cours pour miniaturiser ces systèmes et les adapter aux drones.

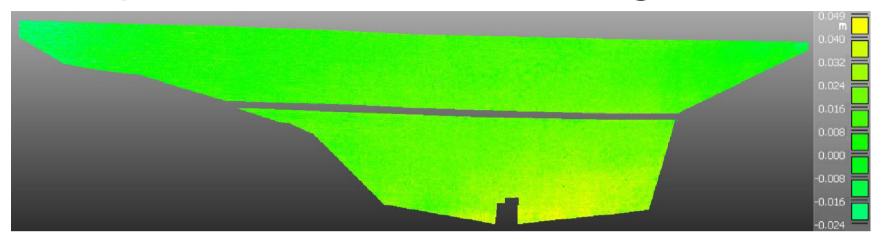
Comparaison Lidar -Photogrammétrie

Expérimentation sur le barrage d'Escoubous (Pyrénées)

Source : Rémy Boudon et al., Congrès SHF : «Drones et hydraulique», Paris, avril 2015

 Parallèlement à la campagne de lasergrammétrie 2013 utilisée comme surface de référence, une expérimentation de photogrammétrie par drone a été menée par EDF et le SERTIT pour évaluer la faisabilité et la précision atteignable pour la réalisation du MNT du parement aval.

Acquisition et traitement des données


- Acquisitions par lasergrammétrie et par drone (photogrammétrie) dans un même référentiel en utilisant 11 cibles topographiques
- Obtention d'un nuage de points en 3D

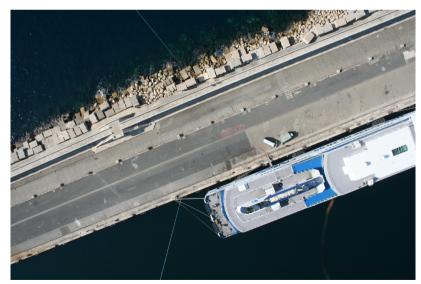
Comparaison Lidar -Photogrammétrie

- Écarts moyens constatés, de l'ordre de 15mm
- Nécessité de maîtriser chacun des paramètres de la chaîne d'acquisition et de traitement pour maîtriser le niveau d'incertitude final
- Volumes de données colossaux nécessitant des ressources informatiques très importantes (et le développement de nouveaux algorithmes)

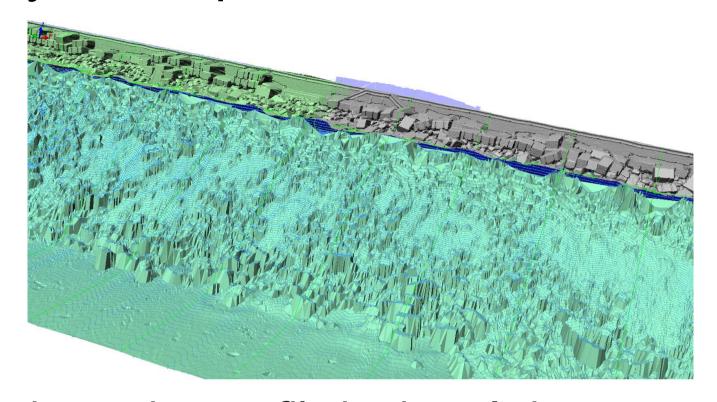
Observation du mouvement des blocs sous eau

Bathymétrie des enrochements sous eau

- La meilleure technique reste le sonar multifaisceaux.
- Localisation possible des irrégularités dans le profil d'un ouvrage
- Mais identification difficile des blocs d'enrochements disposés aléatoirement (difficulté accrue si blocs de petite taille).



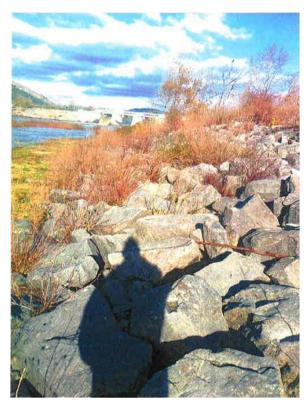
Rénovation de la digue du large à Marseille


 Rénovation de l'élément central, à savoir un tronçon 5,1 kilomètres de long

- Entretien historique de la digue par rechargements.
- Nécessité pour le port de disposer en propre de moyens lourds de levage nautique.

Bathymétrie par sonar multifaisceaux

- sur la base des profils bathymétriques extraits de ce levé :
 - Études en canal et en bassin à houle
 - Définition des profils à atteindre après travaux



Méthodes de diagnostic visant à caractériser l'état des blocs

Deux problématiques

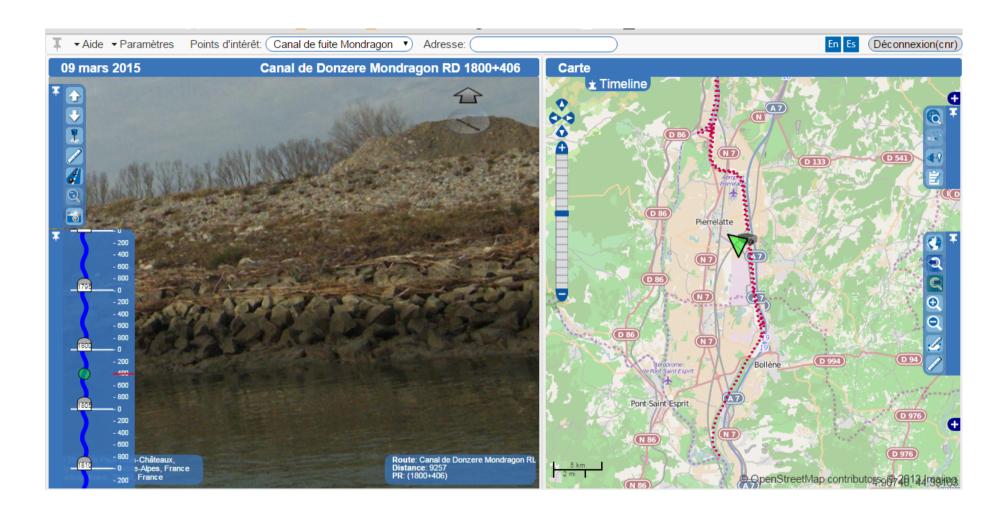
- La fragmentation des blocs en place :
 - restitution de l'étude menée par la Compagnie Nationale du Rhône sur le site de Saint Vallier (entre Lyon et Valence)
- l'usure des blocs en place :
 - inspection des digues de Charente-Maritime produite par le Cerema

Autres points de comparaison entre les deux cas d'étude

- Granulométrie :
 - la taille des blocs à Saint Vallier est bien inférieure à celle des blocs de Charente-Maritime.
 - granulométrie plus étalée à Saint Vallier.
- Techniques d'inspection plus difficiles à mettre en œuvre à Saint Vallier

Saint Vallier

- Aménagement mis en service en 1971, longueur totale de 18,3 km.
- Une étude réalisée en 1996 avait montré que la qualité intrinsèque des enrochements et l'état général des protections étaient très moyens et devaient être surveillés.
- Nouvelle campagne d'investigation en 2013.
 Principe proche de celui adopté en 1996, ce qui permet de mieux apprécier l'évolution de l'état de la protection.



Inspection visuelle

- Pose d'une caméra sur une petite embarcation avec prise de 10 clichés géo-référencés tous les 2 mètres
- Possibilité d'identifier les évolutions d'une année sur l'autre très précisément
- Solution très pratique

Inspection visuelle de Saint Vallier

Sondages et blocométrie

- 9 sondages à la pelle pour vérifier l'épaisseur des protections (de 0,3 à 1,0 m)
- 3 analyses blocométriques (très forte proportion d'éléments inférieurs à 5 kg).

Essais

- 3 séries d'essais d'indice de continuité et de chute à partir des éléments les plus gros (>50kg) triés lors des analyses blocométriques
 - valeurs obtenues sont faibles, voire très faibles : essais d'indice de continuité moyen de 46 et 47 % de blocs détruits lors des essais de chute.
- La CNR disposant d'une connaissance générale suffisante des matériaux, les essais de laboratoire du type résistance à la compression ou essai d'usure n'ont pas été entrepris.

Conclusion des investigations sur Saint Vallier

- Poursuite de la dégradation des enrochements de migmatite. Evolution beaucoup plus perceptible au travers des essais que par l'observation visuelle car les enrochements fragmentés :
 - glissent dans les espaces restant entre les gros enrochements
 - ou sont emportés par le courant
- Au cours des 17 années passées, le poids moyen est passé de 16 à 5 kg (roches évolutives)
- L'ensemble des données recueillies permettent de déduire les zones les plus critiques sur les critères de résistance, de blocométrie et d'épaisseur.

Diagnostic des digues de Charente-Maritime

- Suite à la tempête Xynthia, nombreux projets de renforcement des ouvrages littoraux
- Laboratoire d'Angers du Cerema mandaté en 2014 pour réaliser des expertises sur la durabilité des enrochements

Comparaison des calcaires locaux et des roches métamorphiques

- Le calcaire (couleur claire) est réputé mieux s'intégrer aux sites étudiés (localisés sur l'île de Ré et l'île d'Oléron).
- Mais les roches métamorphiques représentent une solution alternative en terme de durabilité, à condition d'accepter leur couleur plus foncée.

Méthodologie

- Expertise de géologue
 - caractérisation des enrochements formant la carapace d'ouvrages construits de longue date
 - Étude de leur évolution passée pour apprécier leur tenue à différents types de sollicitations
- En complément, établissement des prédictions d'évolution sur la base de deux modèles :
 - la méthode Micro-Deval
 - la méthode de l'indice de qualité de l'enrochement (AQD).

Expertise de terrain

- In situ les opérations ont consisté en :
 - la réalisation de profils et le repérage des blocs,
 - la mesure de la forme des blocs (3 directions) et le positionnement dans le profil,
 - l'établissement de la blocométrie estimée (sur la base de la mesure de 3 dimensions et de la forme),
 - la caractérisation de l'intégrité du bloc (fissure, fracture...) et le comptage de blocs cassés,
 - l'estimation de l'usure des blocs (arêtes et surfaces polies) et l'évaluation de l'imbrication (nombre de contacts entre blocs).

Expertise en laboratoire

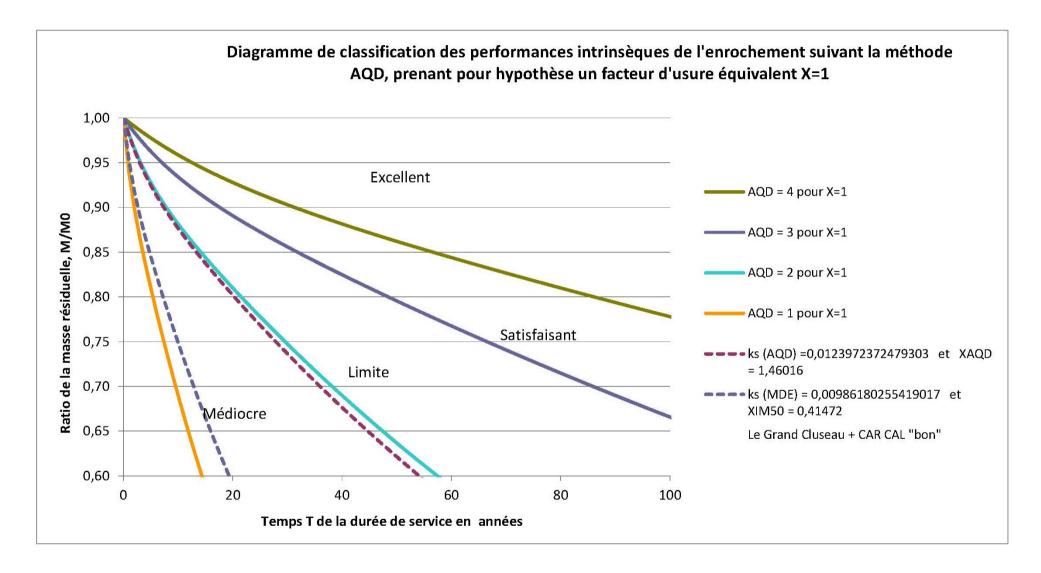
- les essais en laboratoire ont donné
 - la masse volumique,
 - l'absorption d'eau,
 - la résistance à la compression
 - et l'indice de continuité.

Conclusion 1 de l'expertise de géologue

- deux types de calcaire :
 - l'un présentant des caractéristiques insuffisantes (usure en pied des ouvrages)
 - l'autre, présentant des caractéristiques suffisantes.

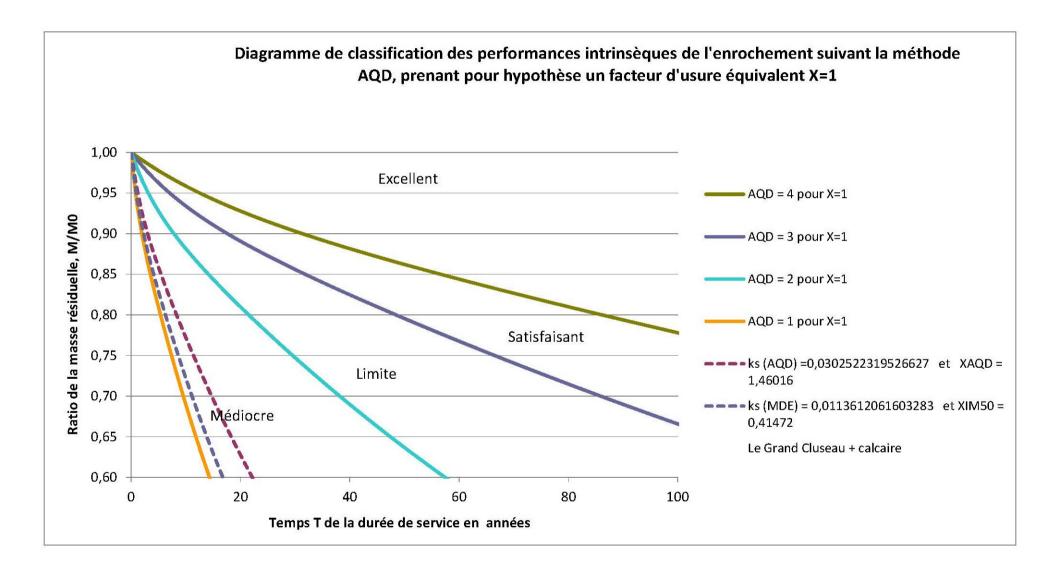
Conclusion 2 de l'expertise de géologue

Les roches
 métamorphiques présentent
 des caractéristiques
 supérieures aux calcaires
 et une bonne durabilité sur
 les ouvrages étudiés.

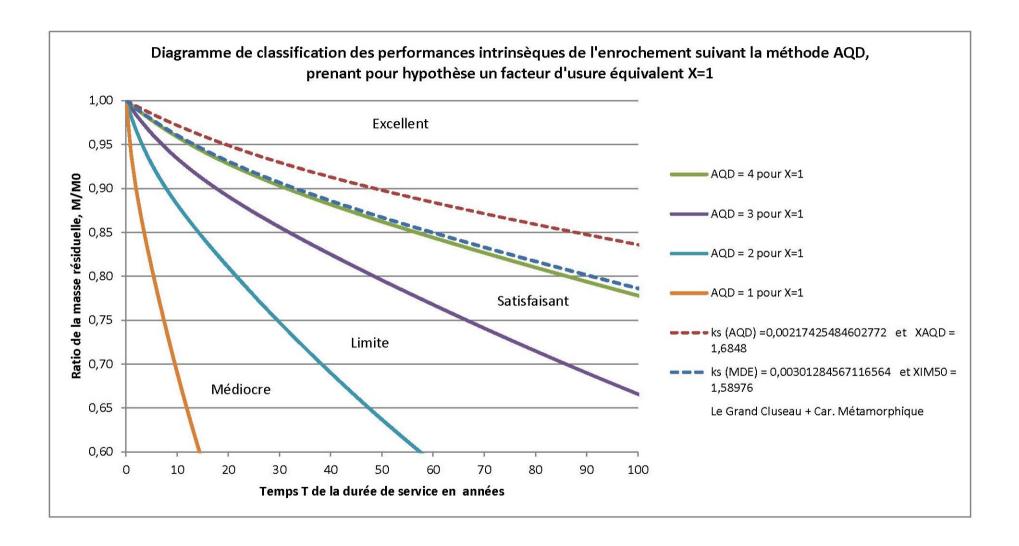

Prédiction de l'évolution par des modèles de dégradation

Modèle basé sur :

- Une propriété spécifique : dans le cas présent, la résistance à l'abrasion,
- Ou un indice de qualité global de type AQD prenant en compte 9 critères de terrain et 6 critères de laboratoire



Résultat pour le calcaire « bon »



Résultat pour le calcaire « médiocre »

Résultat pour une roche métamorphique

Conclusion des investigations en Charente-Maritime

- Recommandations sur les caractéristiques mécaniques des enrochements destinés au renforcement des ouvrages sur la base :
 - des résultats d'expertise sur les enrochements en place dans les ouvrages
 - de la comparaison avec les caractéristiques des futurs sites avec les sites étudiés

Conclusion générale

- Orienter les investigations en établissant le lien avec les modes de défaillance potentiels.
- Suivi régulier dans le temps en distinguant :
 - la position des blocs d'enrochements
 - les caractéristiques de ces blocs.
- Sur le plan opérationnel, le suivi des enrochements pose des difficultés particulières liées à :
 - leur irrégularité et leur mobilité
 - leur accessibilité limitée par moyen terrestre.

Conclusion générale Suivi de la position des enrochements

Hors d'eau :

- Sans couverture végétale : photogrammétrie par drone (attention à la précision, au volume des données et à leur traitement)
- Avec couverture végétale : lasergrammétrie par avion ou hélicoptère
- Sous eau : bathymétrie par sondeur multifaisceaux
- La position des gros enrochements peut être connue mais pour de petits enrochements, seul le profil général est accessible.

Conclusion générale Caractéristiques des enrochements

- Nécessité de procéder à des sondages dans le cas critique de petits enrochements couverts par la végétation, voire par de la terre végétale,
- Possibilité d'objectiver les analyses par la mise en œuvre de modèles de dégradations basés sur les résultats d'inspections visuelles et d'essais en laboratoires.

Merci pour votre attention

Marc IGIGABEL Ingénieur chargé d'études Division Aménagement et Risques Naturels

+33 (0)2 98 05 76 51 marc.igigabel@cerema.fr