

National Network of Regional Coastal Monitoring Programmes

- Scheme for the collection of a variety of coastal monitoring data, providing the underpinning for flood and coastal erosion risk management (FCERM) in England.
- Employ a consistent and targeted data collection strategy and make data and reporting feely available

www.coastalmonitoring.org

- Topo beach surveys
- Cliff surveys
- Aerial photography
- Lidar
- Bathymetry
- Funded in 6-year phases (2027)
 Department for Environment , Food & Rural Affairs

Hydrodynamic Network

- 72 Instruments
 - 37 wave buoys
 - 15 tide gauges
 - 20 met stations

As of 1 December 2021...

- 498 years of wave data
 + 31 years of QC'd
 commercial wave data
- 202 years of tide data
- 223 years of met data

Wave Buoy Network Overview

35 buoys on HF comms.2 buoys on Iridium comms.

Overall purpose: Provide the evidence base for flood and coastal erosion risk management (FCERM)

- Provide real-time data for coastal flood forecasting, warning and beach ops.
- Provide base-line statistics for future coastal and marine planning projects
- Enable operational assistance in coastal construction projects
- Assist the monitoring of coastal processes such as beach erosion and transport
- Validate coastal wave hydrodynamics and sediment dynamics modelling

Wave Buoy Network Maintenance

Maintenance work contracted to Fugro GB Marine Ltd
 Wave buoys are serviced on a 6-monthly schedule

NNRCMP. 2021. Specification for Hydrodynamic Services

 Data is collected, quality-controlled and distributed by the Channel Coastal Observatory

Mason & Dhoop 2017 Quality Control of Wave Data

www.coastalmonitoring.org

Go directly to table data: Waves · Tides · Met · GPS data

Wave Buoy Network Data Delivery

- Real-time:
 - o Graphs: H_{m0} , $H_{max} \mid T_p$, $T_{m02} (T_z) \mid Dir_{peak}$, $Spr_{peak} \mid SST$
 - [Coming soon: Energy period T_e and wave power P, calculated on the fly]
 - Plots of the wave spectrum & wave period vs direction
 - Plot of the wave displacements (heaves)
 - Live feed of wave displacements, updated every 5s
- 🞐 APL
 - Most recent wave buoy data
 - Historic wave buoy data
- Quality-controlled archived data: [one month in arrears, auto + manual]
 - \circ Timestamp (GMT), Lat, Lon, H_{m0} , H_{max} , T_p , T_{m02} (T_z), Dir_{peak} , Spr_{peak} , SST
 - [Coming soon: Full upcross and spectral parameter output
 - + energy period T_e and wave power P

Legend Arrow size: wave height/wind

[*.RAW file]

Wave Buoy Network Analysis Outputs

[combination of sea and swell]

- Bimodal seas:
 - O Methodology:

Mason, T. & Dhoop, T. 2018. Occurrence of bimodal seas around the English coastline

O Dataset:

Monthly occurrence of bimodal seas

- Annual reports:
 - Statistical analysis of quality-controlled wave parameters

Date/Time	Symbol	H, (m)	Water level elevation		
			OD	CD	Joint Return Period
09-Feb-2020 11:30:00	•	3.62	1.86	4.59	1 in 5 years
15-Jan-2020 01:00:00	•	3.56	2.20	4.93	1 in 5 years
16-Feb-2020 05:30:00	•	3.44	1.47	4.20	1 in 5 years
27-Dec-2020 04:30:00		3.13	-0.23	2.50	1 in 2 years

