

RAPPORT INERIS- DRC-16-149793-00431B

VALORISATION DE SEDIMENTS EN TECHNIQUE ROUTIERE – GT1

EVALUATION DE LA DANGEROSITE : PROPOSITION DE SEUILS ET CONFRONTATION A DES DONNEES FRANÇAISES

07/02/2017

VALORISATION DE SEDIMENTS EN TECHNIQUE ROUTIERE - GT 1

EVALUATION DE LA DANGEROSITE : PROPOSITION DE SEUILS ET CONFRONTATION A DES DONNEES FRANÇAISES

Rapport réalisé pour le MEEM (DGPR)

PRÉAMBULE

Le présent rapport a été établi sur la base des informations fournies à l'INERIS et au Cerema, des données (scientifiques ou techniques) disponibles et objectives et de la réglementation en vigueur.

La responsabilité de l'INERIS et du Cerema ne pourra être engagée si les informations qui leur ont été communiquées sont incomplètes ou erronées.

Les avis, recommandations, préconisations ou équivalent qui seraient portés par l'INERIS et le Cerema dans le cadre des prestations qui leur sont confiées, peuvent aider à la prise de décision. Etant donné les missions qui incombent à l'INERIS et au Cerema, ils n'interviennent pas dans la prise de décision proprement dite. La responsabilité de l'INERIS et du Cerema ne peut donc se substituer à celle du décideur.

Le destinataire utilisera les résultats inclus dans le présent rapport intégralement ou sinon de manière objective. Son utilisation sous forme d'extraits ou de notes de synthèse sera faite sous la seule et entière responsabilité du destinataire. Il en est de même pour toute modification qui y serait apportée.

L'INERIS et le Cerema dégagent toute responsabilité pour chaque utilisation du rapport en dehors de la destination de la prestation.

CEREMA	Rédaction	Vérification	Approbation
NOM	Gaëtan LEFEBVRE	Céline HEBRARD	Corinne LAMPIN
Qualité	Chargé d'études Thématique Qualité des Sols - Déchets	Responsable du Groupe Eaux et Sols	Chef de département Bâtiment Énergie Environnement
Visa	1.9	Much	A

INERIS	Rédaction	Vérification	Approbation
NOM	Flore REBISCHUNG	Roger REVALOR	Martine RAMEL
Qualité	Ingénieur de l'unité Comportement des Contaminants dans les Sols et les Matériaux	Responsable de l'unité Comportement des Contaminants dans les Sols et les Matériaux	Responsable du Pôle Risque et Technologies Durables
Visa		4	Rames

SOMMAIRE

RES	UME	7
INTR	RODUCTION	8
1. C	CONTEXTE REGLEMENTAIRE SUR LA CLASSIFICATION DES DECI	
2. S	SUBSTANCES CLASSANTES ET SEUILS « PIRE CAS »	
2.1	Substances prises en compte	12
2.2	Approche bibliographique ciblée	14
2.3	Proposition de seuils	27
	COLLECTE DE DONNEES DE COMPOSITION CHIMIQUE DES SEDIMENTS FRANÇAIS	33
3.1	Organismes sollicités	33
3.2	Types de données collectées	33
3.3	Répartition des données utilisées	35
3.4	Description des données utilisées par élément	36
	CONFRONTATION DES DONNEES COLLECTEES AUX SEUILS PIRE	
4.1	Résultats pour les ETM	42
4.2	Résultats pour les HAP	42
4.3	Résultats pour les PCB	43
4.4	Résultats pour le TBT	44
4.5	Résultats compilés	44
5. C	CONCLUSION	45
LICT	E DEC ANNEVEC	47

LISTE DES TABLEAUX

Tableau 1 : Synthèse des règles de classement des propriétés de danger dont l'évaluation s'appuie sur la connaissance en substances des déchets11
Tableau 2 : Seuils de classement « pire cas » (en %)13
Tableau 3 : Seuils de classement « pire cas » révisés en excluant les 11 substances étudiées (en %)28
Tableau 4 : Démarche d'élaboration des seuils29
Tableau 5 : Seuils proposés32
Tableau 6 : Nombre et pourcentage d'échantillons disposant d'analyses pour les ETM
Tableau 7 : Gammes de concentrations mesurées en ETM37
Tableau 8 : Nombre et pourcentage d'échantillons disposant d'analyses pour les HAP38
Tableau 9 : Gammes de concentrations mesurées en HAP39
Tableau 10 : Nombre et pourcentage d'échantillons disposant d'analyses pour les PCB40
Tableau 11 : Gammes de concentrations mesurées en PCB40
Tableau 12 : Gammes de concentrations mesurées en TBT41
Tableau 13 : Nombre et pourcentage d'échantillons classés par les seuils associés aux ETM42
Tableau 14 : Nombre et pourcentage d'échantillons classés par les seuils associés aux HAP43
Tableau 15 : Nombre et pourcentage d'échantillons classés par le seuil réglementaire PCB43
Tableau 16 : Nombre et pourcentage d'échantillons classés par le seuil associé au TBT44
Tableau 17 : Synthèse des seuils proposés45
LISTE DES FIGURES
Figure 1 : Répartition des données par organismes35
Figure 2 : Répartition des données entre sédiments marins et fluviaux36
Figure 3 : Nombre d'échantillons disposant d'analyses pour les ETM37
Figure 4 : Nombre d'échantillons disposant d'analyses pour les HAP38
Figure 5 : Nombre d'échantillons disposant d'analyses pour les PCB40

RESUME

Dans le cadre d'une mission confiée par la Direction Générale de la Prévention des Risques du Ministère en charge de l'Environnement au Cerema, sur le sujet de la valorisation de sédiments en technique routière (visant à formaliser à terme un guide fils du guide Sétra sur le sujet) et, dans un second temps, en travaux maritimes et fluviaux, l'INERIS et le Cerema ont travaillé à l'élaboration d'une démarche simplifiée de l'évaluation de la dangerosité des sédiments.

Pour ce faire, une base de données des substances dangereuses contenant au moins un élément trace métallique (ETM) ciblé par les analyses classiquement effectuées sur les matrices sédimentaires a été élaborée à partir de la classification harmonisée.

Sur cette base, des seuils « pire cas » permettant une évaluation simplifiée de la dangerosité ont été définis, puis approfondis par des recherches bibliographiques ciblées.

En parallèle, des données analytiques ont été collectées auprès des gestionnaires français; une base de données constituée de près de 6700 échantillons et de 148 000 résultats analytiques a été établie.

Cette base a pu être comparée aux seuils proposés afin d'en évaluer la criticité. En utilisant l'approche simplifiée mais conservatrice d'évaluation de la dangerosité via les seuils proposés, et sur la base des analyses disponibles, 97,3 % des échantillons de la base de données française sont avérés non dangereux pour les propriétés de danger HP 4, HP 5, HP 6, HP 7, HP 8, HP 10, HP 11 et HP 13. Les 2,7 % restants devraient être classés comme dangereux sans une étude complémentaire approfondie.

Une limite à cette étude réside toutefois dans le fait que cette approche simplifiée s'intéresse uniquement aux éléments et substances suivis dans le cadre de la réglementation applicable aux opérations de dragage et donc couramment analysés dans les sédiments (8 ETM, HAP, PCB et tributylétain – TBT – pour les sédiments marins), et que d'autres substances éventuellement en présence pourraient impacter le classement en dangerosité.

INTRODUCTION

La Direction Générale de la Prévention des Risques a confié au Cerema la mission de mettre en place et de piloter un groupe de travail sur le sujet de la valorisation de sédiments en technique routière et, dans un second temps, en travaux maritimes et fluviaux.

Le premier objectif de ce groupe de travail est de produire un guide d'application, à l'instar de ceux qui existent pour les mâchefers d'incinération de déchets non dangereux, les laitiers sidérurgiques, et de déchets de déconstruction du BTP. Dans un second temps, l'objectif fixé est de produire, d'une part une méthodologie pour l'étude de l'acceptabilité environnementale de déchets en travaux maritimes et fluviaux dans l'esprit de celle qui existe pour la technique routière (guide Sétra de mars 2011), et d'autre part d'appliquer cette méthodologie au cas des sédiments.

Préalablement au lancement de ces travaux, un certain nombre de sujets spécifiques aux sédiments doivent être étudiés et débattus collégialement, parmi lesquels la question de l'évaluation de la dangerosité des sédiments, prérequis nécessaire avant la valorisation en technique routière.

Dans ce cadre, un sous-groupe de travail (GT 1) a abordé la question sous différents angles. L'INERIS et le Cerema ont conjointement travaillé à l'élaboration de seuils pour les paramètres habituellement mesurés dans les sédiments, qui permettraient de garantir la non dangerosité (pour les propriétés HP 4, HP 5, HP 6, HP 7, HP 8, HP 10, HP 11 et HP 13) de façon simplifiée par rapport à la démarche habituelle d'évaluation. Il convient de noter que la propriété HP 14 (écotoxique) a fait l'objet d'un travail spécifique ces dernières années, et n'est donc pas abordée dans la présente étude.

Le présent rapport est le fruit de ce travail commun. Il convient de noter que dans le cadre de ce même GT 1, le BRGM a produit un travail sur cette thématique, en retenant une approche différente et complémentaire à celle développée ici.

1. <u>CONTEXTE REGLEMENTAIRE SUR LA CLASSIFICATION DES</u> DECHETS

Dans la nomenclature des déchets telles que définie par la réglementation européenne (dans la décision du 3 mai 2000 modifiée¹), les sédiments dragués relèvent des entrées suivantes :

- chapitre 17 : déchets de construction et de démolition (y compris déblais provenant de sites contaminés)
 - o section 17 05 : terres (y compris déblais provenant de sites contaminés), cailloux et boues de dragage
 - rubrique 17 05 05*: boues de dragage contenant des substances dangereuses
 - rubrique 17 05 06 : boues de dragage autres que celles visées à la rubrique 17 05 05.

Ces deux rubriques miroirs ne permettent pas à elles seules de statuer quant au caractère dangereux ou non des sédiments en tant que déchets. De ce fait, l'évaluation des propriétés de danger HP 1 à HP 15 est nécessaire.

L'évaluation du caractère dangereux des sédiments a donc été déterminée sur la base des propriétés de danger mentionnées à l'annexe III de la directive cadre déchets, révisée par le règlement UE n°1357/2014, dites « propriétés de danger HP 1 - HP 15 », et listées ci-après :

- HP 1: explosif

- HP 2 : comburant

- HP 3: inflammable

- HP 4 : irritant – irritation cutanée et lésions oculaires

 HP 5 : toxicité spécifique pour un organe cible (STOT) / toxicité par aspiration

- HP 6 : toxicité aigüe

- HP 7 : cancérogène

- HP 8 : corrosif

- HP 9: infectieux

- HP 10 : toxique pour la reproduction

¹ Décision n° 2000/532/CE du 03/05/00 remplaçant la décision 94/3/CE établissant une liste de déchets en application de l'article 1er, point a), de la directive 75/442/CEE du Conseil relative aux déchets et la décision 94/904/CE du Conseil établissant une liste de déchets dangereux en application de l'article 1er, paragraphe 4, de la directive 91/689/CEE du Conseil relative aux déchets dangereux

- HP 11 : mutagène

HP 12 : dégagement d'un gaz à toxicité aigüe

- HP 13 : sensibilisant

- HP 14 : écotoxique

- HP 15 : déchet capable de présenter une des propriétés dangereuses susmentionnées que ne présente pas directement le déchet d'origine.

Dans le cadre de ce rapport, seules les propriétés de danger dont l'évaluation s'appuie sur la base de la connaissance en substances du déchet et l'application de règles de classement ont été considérées. Il s'agit des propriétés HP 4, HP 5, HP 6, HP 7, HP 8, HP 10, HP 11, et HP 13. Les règles de classement applicables dans ce cadre sont présentées dans le Tableau 1.

On notera que selon les propriétés, certaines règles imposent de sommer les concentrations en substances présentant la même mention de danger (HP 4, HP 5-G, HP 6, HP 8). Pour les autres règles (HP 5 autres que G, HP 7, HP 10, HP 11 et HP 13), les concentrations en substances dangereuses sont comparées individuellement au seuil. Cette différence aura un impact important dans la suite de l'étude.

Pour toutes ces règles, un nombre sans unité peut être calculé, correspondant au rapport entre le terme de gauche (somme des concentrations des substances présentant la mention de danger considérée) et le terme de droite (limite de concentration classante) de l'inégalité formulée dans la colonne des règles de classement. Ce chiffre, appelé « indice de dangerosité » (ID), permet d'évaluer directement le classement :

- s'il est supérieur ou égal à 1, le déchet est dangereux,
- s'il est inférieur à 1, le déchet est non dangereux pour la règle de classement considérée.

Tableau 1 : Synthèse des règles de classement des propriétés de danger dont l'évaluation s'appuie sur la connaissance en substances des déchets

Prop.	Danger	Mentions de danger des substances prise en compte dans les calculs	Règles de classement
HP 4	Irritant	H314 Skin corr. 1A H318 Eye dam. 1 H315 Skin irrit. 2, H319 Eye irrit. 2	A : ∑ H314 1A ≥ 1 % B : ∑ H318 ≥ 10 % C : ∑ (H315 et H319) ≥ 20 %
HP 5	Nocif / Toxicité spécifique pour un organe cible (STOT) – toxicité par aspiration	H370 STOT SE 1 H371 STOT SE 2 H335 STOT SE 3 H372 STOT RE 1 H373 STOT RE 2 H304 Asp. Tox. 1	A : max (H370) ≥ 1 % B : max (H371) ≥ 10 % C : max (H335) ≥ 20 % D : max (H372) ≥ 1 % E : max (H373) ≥ 10 % F : max (H304) ≥ 10 % G : ∑ H304 ≥ 10 % et viscosité cinématique globale du déchet à 40 °C < 20,5 mm²/s
HP 6	Toxique	H300 Acute Tox.1 (Oral) H300 Acute Tox. 2 (Oral H301 Acute Tox. 3 (Oral) H302 Acute Tox 4 (Oral) H310 Acute Tox.1 (Dermal) H310 Acute Tox.2 (Dermal) H311 Acute Tox. 3 (Dermal) H312 Acute Tox 4 (Dermal) H330 Acute Tox 1 (Inhal.) H330 Acute Tox.2 (Inhal.) H331 Acute Tox. 3 (Inhal.) H332 Acute Tox. 4 (Inhal.)	A: Σ H300 1 ≥ 0,1 % B: Σ H300 2 ≥ 0,25 % C: Σ H301 ≥ 5 % D: Σ H302 ≥ 25 % E: Σ H310 1 ≥ 0,25 % F: Σ H310 2 ≥ 2,5 % G: Σ H311 ≥ 15 % H: Σ H312 ≥ 55 % I: Σ H330 1 ≥ 0,1 % J: Σ H330 2 ≥ 0,5 % K: Σ H331 ≥ 3,5 % L: Σ H332 ≥ 22,5 %
HP 7	Cancérogène	H350 Carc. 1A et 1B H351 Carc. 2	A : max (H350) ≥ 0,1 % B : max (H351) ≥ 1 %
HP 8	Corrosif	H314 Skin Corr. 1A, 1B et 1C	A : ∑ H314 ≥ 5 %
HP 10	Toxique pour la reproduction	H360 Repr. 1A et 1B H361 Repr. 2	A : max (H360) ≥ 0,3 % B : max (H361) ≥ 3 %
HP 11	Mutagène	H340 Muta. 1A et 1B H341 Muta. 2	A : max (H340) ≥ 0,1 % B : max (H341) ≥ 1 %
HP 13	Sensibilisant	H317, H334	A : max (H317) ≥ 10 % B : max(H334) ≥ 10 %

2. SUBSTANCES CLASSANTES ET SEUILS « PIRE CAS »

2.1 SUBSTANCES PRISES EN COMPTE

Le champ couvert par la présente étude est celui des polluants suivis dans le cadre de la réglementation applicable aux opérations de dragage², à savoir :

- 8 métaux lourds : As, Cd, Cr, Cu, Hg, Ni, Pb, Zn ;
- 7 congénères des PCB: 28, 52, 101, 118, 138, 153, 180;
- 16 congénères des HAP : naphtalène, acénaphtène, acénaphtylène, fluorène, phénanthrène, fluoranthène, pyrène, benzo[a]anthracène. anthracène. chrysène, benzo [b] fluoranthène, benzo [k] fluoranthène, benzo [a] pyrène, dibenzo[a,h]anthracène, benzo[g,h,i]pérylène, indéno[1,2,3-cd]pyrène;
- pour les sédiments marins : le tributylétain.

Pour les polluants organiques et pour le tributylétain, la concentration obtenue est directement comparable aux seuils de classement, sous réserve d'avoir identifié les mentions de danger attribuables à chacun de ces composés.

Pour les éléments métalliques se pose la question de l'espèce en présence – les mentions de danger attribuables étant variables selon les espèces pour un même élément. Dans ce cadre, une démarche dite « pire cas » a été mise en œuvre :

- une base de données a été constituée, rassemblant toutes les formes contenant au moins un de ces éléments métalliques, mentionnées à l'annexe VI du règlement CLP³;
- sur la base des mentions de danger attribuées dans la classification harmonisée du règlement CLP, la « pire »⁴ substance possible a été identifiée, pour chaque élément et pour chaque règle de classement, minimisant ainsi la quantité de métal nécessaire pour atteindre le seuil.

Pour les substances organiques incluses dans le champ de l'étude et ne disposant pas de classification harmonisée, l'étude s'est référée aux mentions de danger les plus souvent attribuées aux substances organiques par les notifiants, d'après la base « Inventaire C&L » de l'ECHA.

Les seuils de classement « pire cas » par élément pour les métaux et par substances pour les PCB, HAP et le TBT sont ainsi présentés dans le Tableau 2.

² Arrêté du 9 août 2006 relatif aux niveaux à prendre en compte lors d'une analyse de rejets dans les eaux de surface ou de sédiments marins, estuariens ou extraits de cours d'eau ou canaux relevant respectivement des rubriques 2.2.3.0, 4.1.3.0 et 3.2.1.0 de la nomenclature annexée à l'article R. 214-1 du code de l'environnement

³ Règlement n° 1272/2008 du 16/12/08 relatif à la classification, à l'étiquetage et à l'emballage des substances et des mélanges, modifiant et abrogeant les directives 67/548/CEE et 1999/45/CE et modifiant le règlement (CE) n° 1907/2006

⁴ C'est-à-dire la substance présentant la ou une des mentions de danger impliquées dans la règle, et la masse molaire (ramenée à un coefficient stœchiométrique de 1 pour l'élément concerné) la plus élevée.

Tableau 2 : Seuils de classement « pire cas » (en %)

	HP 4-A	HP 4-B	HP 4-C	HP 5-A	HP 5-B	HP 5-C	HP 5-D	HP 5-E	HP 5-F	HP 6-A	HP 6-B	HP 6-C	ПР 6-D	HP 6-E	HP 6-F	HP 6-G	H-9 H-	HP 6-I	HP 6-J	HP 6-K	HP 6-L	HP 7-A	HP 7-B	HP 8-A	HP 10-A	HP 10-B	HP 11-A	HP 11-B	HP 13-A	HP 13-B
As							0,33	2,16			0,1893	1,08								0,76		0,02		3,79	0,06				3,30	
Cd							0,54	3,07			0,1709	1,53	25,00	0,17			55,00		0,27	1,07	22,50	0,05	0,31		0,16	2,63	0,05	0,88		
Cr	0,34	0,28	5,36			5,36	0,30	0,52				1,61	1,45			7,80	17,66		0,16			0,0052		1,61	0,02	1,56	0,03	0,38	2,68	2,98
Cu		0,67	5,09				0,2102						3,91									0,01			0,06			0,21	0,59	2,10
Hg			17,00			17,00	0,59	7,05			0,1847	2,95	21,24	0,25		10,57			0,50	2,47				2,95	0,30	2,22		0,74		
Ni	0,17	3,21					0,06					2,26	4,46						0,17	1,59	4,01	0,006	0,34	0,80	0,0282			0,09	0,38	0,94
Pb		10					0,6	10				5	25							3,5	22,5	0.06	1		0,18				6,04	
Zn		2,14	2,76			2,76		2,14			0,1900		2,90						0,11		4,10	0,04		2,40		0,72			1,38	
PCB 28								10																						
PCB 52								10																						
PCB 101								10																						
PCB 118								10																					<u> </u>	
PCB 138								10																					<u> </u>	
PCB 153								10																					ļ	
PCB 180								10																					ļ	
Naphtalène													25										1						ļ	
Acénaphtène																													<u> </u>	
Acénaphtylène														0,25				0,1											ļ	
Fluorène																													ļ	
Anthracène																													<u> </u>	
Phénanthrène													25																<u> </u>	
Fluoranthène													25																<u> </u>	
Pyrène																													<u> </u>	
Benzo [a] anthracène																						0,1								
Chrysène																						0,1						1		
Benzo [b] fluoranthène																						0,1							_ 	
Benzo [k]																						0,1							 	
fluoranthène Benzo [a] pyrène																			<u> </u>			0,1			0,3		0,1		10	
Di benzo [a,h] anthracène																						0,1			0,0		0,1			
anthracène Benzo [g,h,i]																						0,1							<u> </u>	
pérylène																													ļ	
Indéno [1,2,3-cd] pyrène																							1							
TBT			20				1					5					55								0,3					

Notes:

- les substances indiquées en rouge et en italique sont celles ne disposant pas d'une classification harmonisée et pour lesquelles les mentions de danger ont été attribuées sur la base de la classification majoritaire de l'inventaire C&L de l'ECHA;
- l'explication des cases vertes est donnée au paragraphe 2.2.

Pour les éléments métalliques, les substances « pire cas » retenues et leurs masses molaires sont présentées à l'annexe 1.

2.2 APPROCHE BIBLIOGRAPHIQUE CIBLEE

Sur les 241 substances dangereuses recensées dans la base et contenant au moins un élément métallique, celles identifiées comme particulièrement pénalisantes ont fait l'objet d'une étude au cas pas cas pour évaluer leur potentiel de présence dans les sédiments. Ces recherches bibliographiques ont ciblé les propriétés physicochimiques des substances, des données sur leur comportement dans les matrices « eau » et « sédiment » mais également des informations sur leur commercialisation (homologation, quantité, etc.).

En particulier, les éventuels dossiers d'enregistrement dans REACH ont été pris en compte : chaque fabricant ou importateur de substances chimiques (en quantité supérieure ou égale à 1 tonne/an) doit soumettre à l'ECHA un dossier d'enregistrement qui indique les propriétés physico-chimiques ainsi que les effets sur la santé humaine ou l'environnement de leurs substances, accompagné des évaluations correspondantes. La quantité d'informations à fournir est d'autant plus importante que le tonnage mis sur le marché est élevé.

Egalement, l'inventaire CMR 2005 a été consulté; il s'agit d'une synthèse de l'enquête réalisée en France dans le courant de l'année 2005, à la demande du ministère du travail, pour évaluer l'importance de l'utilisation professionnelle des agents chimiques classés cancérogènes, mutagènes ou reprotoxiques. Cette base de données comprend 380 fiches. Pour chaque agent chimique CMR, elle fournit des informations sur les quantités produites, exportées ou importées, les secteurs d'utilisation, les moyens de substitution et des estimations du nombre de salariés exposés.

Le logiciel « EPI suite » de l'US EPA (http://www.epa.gov) a été consulté pour obtenir les coefficients de partage N-Octanol/eau (log Kow) des substances. Ce logiciel comprend des valeurs expérimentales et procure également des valeurs estimées pour les molécules dont la valeur expérimentale n'a pas été déterminée.

Les recherches de valeurs log Kow ont été complétées avec les informations issues du site chemspider (http://www.chemspider.com/). Ce site recense les valeurs expérimentales ou prédites par «EPI suite » ainsi que celles calculées par d'autres logiciels :

- ACD/labs (http://www.acdlabs.com/)
- ChemAxon (http://www.chemicalize.org/).

Les 11 substances concernées sont les suivantes :

- Trisodium [4'-(8-acetylamino-3,6-disulfonato-2-naphthylazo)-4"-(6-benzoylamino-3-sulfonato-2-naphthylazo)-biphenyl-1,3',3",1"'-tetraolato-O,O',O",O"']copper(II)
- formic acid, copper nickel salt
- silicic acid, lead nickel salt
- lead hydrogen arsenate
- ziram (ISO); zinc bis dimethyldithiocarbamate
- trizinc diphosphide; zinc phosphide

- nickel triuranium décaoxide
- nickel barium titanium primrose priderite
- nickel(2+) stearate
- nickel(2+) palmitate
- nickel 3,5-bis(tert-butyl-4-hydroxybenzoate (1:2).

Elles sont signalées en vert dans l'annexe 1, et représentent un enjeu de classement plus particulièrement pour les règles de classement suivantes :

- HP 7-A (pour le cuivre, le plomb, le nickel et le zinc),
- HP 6-B (pour le zinc),
- HP 6-J (pour le zinc).

Les seuils qu'elles conditionnent dans une approche « pire cas » sont indiqués en vert dans le Tableau 1.

2.2.1 Trisodium [4'-(8-acetylamino-3,6-disulfonato-2-naphthylazo)-4"-(6-BENZOYLAMINO-3-SULFONATO-2-NAPHTHYLAZO)-BIPHENYL-1,3',3",1"'-TETRAOLATO-O,O',O",O"]COPPER(II)

Identification et données physico-chimiques

Numéro CAS	164058-22-4
EINECS	413-590-3
Formule	C ₄₁ H ₂₃ Cu ₂ N ₆ O ₁₅ S ₃ .3Na
Masse molaire	1131,91
Solubilité	20 g/l (REACH)
Log Kow	< 0,3 (REACH)

Information sur les interactions substance/matrice sédimentaire

Le coefficient de partage N-Octanol/eau (Kow) de cette substance indique qu'il s'agit d'une substance hydrophile qui présente un très faible potentiel d'absorption dans la matrice sédimentaire.

Le guide des exigences d'information et évaluation de la sécurité chimique de l'ECHA précise qu'il est nécessaire de fournir des données pour la toxicité pour les organismes vivants dans les sédiments pour des substances ayant un log Kow > 3, valeur qui est très au-dessus du log Kow associé à la substance étudiée.

Utilisation de cette substance

Cette substance est enregistrée dans REACH, ce qui autorise sa commercialisation sur le territoire européen et rend donc son utilisation et sa présence possible. Une seule entreprise est identifiée comme « producteur/vendeur ». Elle est basée en Allemagne, les données concernant le tonnage sont confidentielles.

Le « trisodium [4'-(8-acetylamino-3,6-disulfonato-2-naphthylazo)-4"-(6-benzoylamino-3-sulfotano-2naphthylazo)-biphenyl-1,3',3",1"'-tetraolato-O,O',O",O"']copper(II) » est identifié dans l'inventaire CMR 2005. Les informations le concernant précisent qu'aucune consommation de cette substance n'était identifiée en France en 2005.

<u>Bilan sur la pertinence de conserver cette substance dans l'évaluation de la dangerosité</u>

Cette substance est autorisée sur le territoire européen. Son utilisation en France n'est toutefois pas confirmée.

Les propriétés physico-chimiques de cette substance rendent sa présence dans les sédiments peu probable. En effet, sa solubilité est modérée et son coefficient de partage N-Octanol/eau est très faible.

Cette substance est donc considérée comme non pertinente et écartée de l'évaluation de la dangerosité des sédiments.

2.2.2 FORMIC ACID, COPPER NICKEL SALT

Identification et données physico-chimiques

Numéro CAS	68134-59-8
EINECS	268-755-0
Formule	C ₄ H ₄ CuNiO ₈
Masse molaire	302,309
Solubilité	Pas de données
Log Kow	- 0,27 (valeur estimée avec le logiciel ChemAxon)

Informations sur les interactions substance/matrice sédimentaire

Aucune donnée expérimentale n'a été identifiée au travers des recherches bibliographiques réalisées dans cette étude.

Le coefficient de partage log Kow retenu dans cette étude est issu du logiciel de modélisation ChemAxon. La valeur obtenue de cette substance indique qu'il s'agit d'une substance hydrophile qui présente un très faible potentiel d'absorption dans la matrice sédimentaire.

Utilisation de cette substance

Cette substance est pré-enregistrée dans REACH. La date limite pour son enregistrement était fixée au 31/05/2013.

Le non-enregistrement dans REACH depuis cette date peut se justifier des manières suivantes :

- la mise sur le marché européen de cette substance a été abandonnée par le producteur/importateur, ou

- le tonnage commercialisé sur le marché européen est inférieur à 1 tonne/an, du fait de son caractère CMR⁵.

Cette substance n'est pas identifiée dans l'inventaire INRS d'utilisation des produits CMR en France de 2005.

<u>Bilan sur la pertinence de conserver cette substance dans l'évaluation de la dangerosité</u>

Le log Kow modélisé de cette substance rend sa présence dans les sédiments peu probable (log Kow négatif).

Les informations issues de REACH indiquent que la commercialisation ou l'importation de cette substance ne sont pas autorisées sur le territoire européen. Toutefois, cette réglementation ne s'applique à cette substance qu'au-delà d'un tonnage annuel d'1 tonne. Ce très faible tonnage n'est pas confirmé.

Au regard de son log Kow négatif et du très faible tonnage possible et non confirmé de cette substance sur l'ensemble du territoire européen (< 1 tonne/an), cette substance est donc considérée comme non pertinente et écartée de l'évaluation de la dangerosité des sédiments.

2.2.3 SILICIC ACID, LEAD NICKEL SALT

Identification et données physico-chimiques

Numéro CAS	68130-19-8
EINECS	-
Formule	HNiO₃PbSi
Masse molaire	342,985
Solubilité	Pas de données
Log Kow	- 1,38 (valeur estimée avec le logiciel ChemAxon)

Informations sur les interactions substance/matrice sédimentaire

Aucune donnée expérimentale n'a été identifiée au travers des recherches bibliographiques réalisées dans cette étude.

Le coefficient de partage log Kow retenu dans cette étude est issu du logiciel de modélisation ChemAxon. La valeur obtenue de cette substance indique qu'il s'agit d'une substance hydrophile qui présente un très faible potentiel d'absorption dans la matrice sédimentaire.

<u>Utilisation de cette substance</u>

Cette substance n'est pas pré enregistrée ou enregistrée dans REACH.

Le non enregistrement dans REACH peut se justifier des manières suivantes :

Pour les substances CMR, le seuil d'enregistrement est de 1 tonne/an depuis le 30/11/2010.

⁵Voir document ED976-inrs2012

- l'absence de commercialisation ou d'importation de cette substance sur le marché européen, ou
- un tonnage commercialisé sur le marché européen inférieur à 1 tonne/an car il s'agit d'une substance CMR (ED976-INRS)

Cette substance n'est pas identifiée dans l'inventaire INRS d'utilisation des produits CMR en France de 2005.

<u>Bilan sur la pertinence de conserver cette substance dans l'évaluation de la dangerosité</u>

Le log Kow modélisé de cette substance rend sa présence dans les sédiments peu probable (log Kow négatif).

Les informations issues de REACH indiquent que la commercialisation ou l'importation de cette substance ne sont pas autorisées sur le territoire européen. Toutefois, cette réglementation ne s'applique à cette substance qu'au-delà d'un tonnage annuel d'1tonne. Ce très faible tonnage n'est pas confirmé.

Au regard de son log Kow négatif et du très faible tonnage possible et non confirmé de cette substance sur l'ensemble du territoire européen (<1 tonne/an), cette substance est donc considérée comme non pertinente et écartée de l'évaluation de la dangerosité des sédiments.

2.2.4 **LEAD HYDROGEN ARSENATE**

Identification et données physico-chimiques

Numéro CAS	7784-40-9
EINECS	232-064-2
Formule	PbHAsO ₄
Masse molaire	347,12
Solubilité	Pas de donnée
Log Kow	- 1,21 (valeur estimée avec le logiciel ChemAxon)

Information sur les interactions substance/matrice sédimentaire

Aucune donnée expérimentale n'a été identifiée au travers des recherches bibliographiques réalisées dans cette étude.

Le coefficient de partage log Kow retenu dans cette étude est issu du logiciel de modélisation ChemAxon. La valeur obtenue de cette substance indique qu'il s'agit d'une substance hydrophile qui présente un très faible potentiel d'absorption dans la matrice sédimentaire.

<u>Utilisation de cette substance</u>

Cette substance est pré-enregistrée dans REACH. La date limite pour son enregistrement était fixée au 30/11/2010.

Le non enregistrement dans REACH depuis cette date peut se justifier des manières

suivantes:

- la mise sur le marché européen de cette substance a été abandonnée par le producteur/importateur,
- le tonnage commercialisé sur le marché européen est inférieur à 1 tonne/an du fait de son caractère CMR.

Le lead hydrogen arsenate est identifié dans l'inventaire INRS d'utilisation des produits CMR en France de 2005. Les informations le concernant précisent qu'aucune consommation de cette substance n'était identifiée en France en 2005.

<u>Bilan sur la pertinence de conserver cette substance dans l'évaluation de la dangerosité</u>

Le log Kow modélisé de cette substance rend sa présence dans les sédiments peu probable (log Kow négatif).

Les informations issues de REACH indiquent que la commercialisation ou l'importation de cette substance ne sont pas autorisées sur le territoire européen. Toutefois, cette réglementation ne s'applique à cette substance qu'au-delà d'un tonnage annuel d'1 tonne. Son utilisation en France n'est pas confirmée.

Au regard de son log Kow négatif et du très faible tonnage possible et non confirmé de cette substance sur l'ensemble du territoire européen (< 1 tonne/an), cette substance est donc considérée comme non pertinente et écartée de l'évaluation de la dangerosité des sédiments.

2.2.5 **ZIRAM**

Identification et données physico-chimiques

Numéro CAS	137-30-4
EINECS	205-288-3
Formule	C ₆ H ₁₂ N ₂ S ₄ Zn
Masse molaire	305,842
Solubilité	0,00097 g/l (REACH)
Log Kow	1,65 (REACH)

Information sur les interactions substance/matrice sédimentaire

Le coefficient de partage N-Octanol/eau (Kow) de cette substance indique qu'il s'agit d'une substance hydrophile qui présente un faible potentiel d'absorption dans la matrice sédimentaire.

REACH fournit des informations sur le comportement de cette substance dans le compartiment sédimentaire. Le temps de demi-vie du ziram est estimé à 0,2 jour dans un milieu « étang » et 0,3 jour dans un milieu « rivière ». Il est également précisé que le ziram se dégrade rapidement dans la matrice sédimentaire en thiram (C6H12N2 S4 – CAS 137-26-8), substance ne contenant plus de zinc.

Utilisation de cette substance

Cette substance est enregistrée dans REACH, ce qui autorise sa commercialisation sur le territoire européen et rend donc son utilisation et sa présence possible.

Les tonnages autorisés sont compris entre 100 et 1000 tonnes par an sur le territoire européen.

Le ziram n'est pas identifié dans l'inventaire INRS d'utilisation des produits CMR en France de 2005.

<u>Bilan sur la pertinence de conserver cette substance dans l'évaluation de la dangerosité</u>

Les informations issues de REACH indiquent que la commercialisation ou l'importation de cette substance sont autorisées sur le territoire européen. Le tonnage maximal annuel a été fixé à 1000 tonnes par an. Son utilisation en France n'est pas confirmée.

Les informations collectées sur les propriétés physico-chimiques du Ziram montrent que son pourvoir d'absorption par les sédiments est faible (Log Kow = 1,65).

Des études menées sur son comportement dans la matrice sédimentaire révèlent que sa dégradation est rapide en un métabolite non retenu dans cette étude.

Au regard des informations sur sa dégradation rapide dans les sédiments, cette substance est donc considérée comme non pertinente et écartée de l'évaluation de la dangerosité des sédiments.

2.2.6 TRIZINC DIPHOSPHIDE

Identification et données physico-chimiques

1	
Numéro CAS	1314-84-7
EINECS	215-244-5
Formule	P ₂ Zn ₃
Masse molaire	258,1
Solubilité	Pas de donnée
Log Kow	- 1,59 (valeur estimée avec le logiciel ChemAxon)

Informations sur les interactions substance/matrice sédimentaire

Aucune donnée expérimentale n'a été identifiée au travers des recherches bibliographiques réalisées dans cette étude.

Le coefficient de partage log Kow retenu dans cette étude est issu du logiciel de modélisation ChemAxon. La valeur obtenue de cette substance indique qu'il s'agit d'une substance hydrophile qui présente un très faible potentiel d'absorption dans la matrice sédimentaire.

Cette substance est un pesticide qui a fait l'objet d'une publication de l'European Food Safety Authority (EFSA) en 2010⁶.

Il y est précisé que l'exposition liée à cette substance et à ses produits de dégradation devrait être négligeable dans le milieu sédimentaire. Très toxique pour les organismes aquatiques, le risque est toutefois évalué comme faible, sur la base de l'exposition négligeable prévue.

Utilisation de cette substance

Cette substance est pré-enregistrée dans REACH. La date limite pour son enregistrement était fixée au 30/11/2010.

Le non enregistrement dans REACH depuis cette date peut se justifier des manières suivantes :

- la mise sur le marché européen de cette substance a été abandonnée par le producteur/importateur, ou
- le tonnage commercialisé sur le marché européen est inférieur à 100 tonne/an, du fait de son caractère très toxique pour les milieux aquatiques ⁷.

Cette substance (non CMR) n'est pas concernée par l'inventaire INRS d'utilisation des produits CMR en France de 2005.

<u>Bilan sur la pertinence de conserver cette substance dans l'évaluation de la dangerosité</u>

Le log Kow modélisé de cette substance rend sa présence dans les sédiments peu probable (log Kow négatif).

Les informations issues de REACH indiquent que la commercialisation ou l'importation de cette substance n'est pas autorisée sur le territoire européen. Toutefois, cette réglementation ne s'applique à cette substance qu'au-delà d'un tonnage annuel de 100 tonnes (seuil qui sera abaissé à 1 tonne par an à partir du 31/05/2018).

L'EFSA estime que l'exposition liée à cette substance et à ses produits de dégradation devrait être négligeable dans le milieu sédimentaire.

Au regard de son log Kow négatif, du très faible tonnage possible et non confirmé de cette substance sur l'ensemble du territoire européen (<100 tonnes/an), et de l'exposition dans le milieu sédimentaire estimée comme négligeable par l'EFSA, cette substance est donc considérée comme non pertinente et écartée de l'évaluation de la dangerosité des sédiments.

INERIS- DRC-16-149793-00431B

⁶Conclusion on the peer review of pesticide risk assessment of the active substance phosphide – EFSA 2010

⁷ Pour les substances très toxiques pour l'environnement, le seuil d'enregistrement est de 100 tonne/an depuis le 30/11/2010.

2.2.7 NICKEL TRIURANIUM DECAOXIDE

Identification et données physico-chimiques

Numéro CAS	15780-33-3
EINECS	239-876-6
Formule	NiU ₃ O ₁₀
Masse molaire	932,79
Solubilité	Pas de donnée
Log Kow	- 2,64 (valeur estimée avec le logiciel ChemAxon)

Informations sur les interactions substance/matrice sédimentaire

Aucune donnée expérimentale n'a été identifiée au travers des recherches bibliographiques réalisées dans cette étude.

Le coefficient de partage log Kow retenu dans cette étude est issu du logiciel de modélisation ChemAxon. La valeur obtenue de cette substance indique qu'il s'agit d'une substance hydrophile qui présente un très faible potentiel d'absorption dans la matrice sédimentaire.

<u>Utilisation de cette substance</u>

Cette substance est pré-enregistrée dans REACH. La date limite pour son enregistrement était fixée au 31/05/2013.

Le non enregistrement dans REACH depuis cette date peut se justifier des manières suivantes :

- la mise sur le marché européen de cette substance a été abandonnée par le producteur/importateur,
- le tonnage commercialisé sur le marché européen est inférieur à 1 tonne/an du fait de son caractère CMR.

Le nickel triuranium décaoxide n'est pas identifié dans l'inventaire INRS d'utilisation des produits CMR en France de 2005.

<u>Bilan sur la pertinence de conserver cette substance dans l'évaluation de la dangerosité</u>

Le log Kow modélisé de cette substance rend sa présence dans les sédiments peu probable (log Kow négatif).

Les informations issues de REACH indiquent que la commercialisation ou l'importation de cette substance ne sont pas autorisées sur le territoire européen. Toutefois, cette réglementation ne s'applique à cette substance qu'au-delà d'un tonnage annuel d'1 tonne. Son utilisation en France n'est pas confirmée.

Au regard de son log Kow négatif et du très faible tonnage possible et non confirmé de cette substance sur l'ensemble du territoire européen (< 1 tonne/an), cette substance est donc considérée comme non pertinente et écartée de l'évaluation de la dangerosité des sédiments.

2.2.8 NICKEL BARIUM TITANIUM PRIMROSE PRIDERITE

Identification et données physico-chimiques

Numéro CAS	68610-24-2
EINECS	271-853-6
Formule	BaNiTi ₇ O ₁₆
Masse molaire	787,34
Solubilité	Pas de donnée
Log Kow	Pas de donnée

Informations sur les interactions substance/matrice sédimentaire

Aucune donnée expérimentale n'a été identifiée au travers des recherches bibliographiques réalisées dans cette étude.

Aucun des logiciels utilisés pour cette étude ne fournit de log Kow pour le Nickel Barium Titanium primrose priderite.

Utilisation de cette substance

Cette substance est pré-enregistrée dans REACH. La date limite pour son enregistrement était fixée au 30/11/2010.

Le non enregistrement dans REACH depuis cette date peut se justifier des manières suivantes :

- la mise sur le marché européen de cette substance a été abandonnée par le producteur/importateur,
- le tonnage commercialisé sur le marché européen est inférieur à 1 tonne/an du fait de son caractère CMR.

Le nickel barium titanium primrose priderite n'est pas identifié dans l'inventaire INRS d'utilisation des produits CMR en France de 2005.

<u>Bilan sur la pertinence de conserver cette substance dans l'évaluation de la dangerosité</u>

Les informations issues de REACH indiquent que la commercialisation ou l'importation de cette substance ne sont pas autorisées sur le territoire européen. Toutefois, cette réglementation ne s'applique à cette substance qu'au-delà d'un tonnage annuel d'1 tonne. Son utilisation en France n'est pas confirmée.

Au regard du très faible tonnage possible et non confirmé de cette substance sur l'ensemble du territoire européen (< 1 tonne/an), cette substance est donc considérée comme non pertinente et écartée de l'évaluation de la dangerosité des sédiments.

2.2.9 NICKEL(2+) STEARATE

Identification et données physico-chimiques

Numéro CAS	2223-95-2
EINECS	218-744-1
Formule	C36H70NiO4
Masse molaire	625.66
Solubilité	Pas de donnée
Log Kow	7,15 (valeur estimée avec le logiciel ChemAxon)

Informations sur les interactions substance/matrice sédimentaire

Aucune donnée expérimentale n'a été identifiée au travers des recherches bibliographiques réalisées dans cette étude.

Le coefficient de partage log Kow retenu dans cette étude est issu du logiciel de modélisation ChemAxon. La valeur obtenue de cette substance indique que la molécule est à considérer comme lipophile et potentiellement bioaccumulable dans les tissus organiques riches en lipides (log Kow > 3).

Utilisation de cette substance

Cette substance est pré-enregistrée dans REACH. La date limite pour son enregistrement était fixée au 30/11/2010.

Le non enregistrement dans REACH depuis cette date peut se justifier des manières suivantes :

- la mise sur le marché européen de cette substance a été abandonnée par le producteur/importateur,
- le tonnage commercialisé sur le marché européen est inférieur à 1 tonne/an du fait de son caractère CMR.

Le nickel(2+) stearate n'est pas identifié dans l'inventaire INRS d'utilisation des produits CMR en France de 2005.

<u>Bilan sur la pertinence de conserver cette substance dans l'évaluation de la dangerosité</u>

Le log Kow modélisé de cette substance rend possible sa présence dans les sédiments (Kow > 3). Néanmoins, les informations issues de REACH indiquent que la commercialisation ou l'importation de cette substance ne sont pas autorisées sur le territoire européen. Toutefois, cette réglementation ne s'applique à cette substance qu'au-delà d'un tonnage annuel d'1 tonne. Son utilisation en France n'est pas confirmée.

Au regard du très faible tonnage possible et non confirmé de cette substance sur l'ensemble du territoire européen (< 1 tonne/an), cette substance est donc considérée comme non pertinente et écartée de l'évaluation de la dangerosité des sédiments.

2.2.10 NICKEL(2+) PALMITATE

Identification et données physico-chimiques

Numéro CAS	13654-40-5
EINECS	237-138-8
Formule	C32H62NiO4
Masse molaire	569,53
Solubilité	Pas de donnée
Log Kow	6,26 (valeur estimée avec le logiciel ChemAxon)

Informations sur les interactions substance/matrice sédimentaire

Aucune donnée expérimentale n'a été identifiée au travers des recherches bibliographiques réalisées dans cette étude.

Le coefficient de partage log Kow retenu dans cette étude est issu du logiciel de modélisation ChemAxon. La valeur obtenue de cette substance indique que la molécule est à considérer comme lipophile et potentiellement bioaccumulable dans les tissus organiques riches en lipides (log Kow > 3).

Utilisation de cette substance

Cette substance est pré-enregistrée dans REACH. La date limite pour son enregistrement était fixée au 31/05/2013.

Le non enregistrement dans REACH depuis cette date peut se justifier des manières suivantes :

- la mise sur le marché européen de cette substance a été abandonnée par le producteur/importateur,
- le tonnage commercialisé sur le marché européen est inférieur à 1 tonne/an du fait de son caractère CMR.

Le nickel II palmitate n'est pas identifié dans l'inventaire INRS d'utilisation des produits CMR en France de 2005.

<u>Bilan sur la pertinence de conserver cette substance dans l'évaluation de la dangerosité</u>

Le log Kow modélisé de cette substance rend possible sa présence dans les sédiments (Kow > 3). Néanmoins, les informations issues de REACH indiquent que la commercialisation ou l'importation de cette substance ne sont pas autorisées sur le territoire européen. Toutefois, cette réglementation ne s'applique à cette substance qu'au-delà d'un tonnage annuel d'1 tonne. Son utilisation en France n'est pas confirmée.

Au regard du très faible tonnage possible et non confirmé de cette substance sur l'ensemble du territoire européen (< 1 tonne/an), cette substance est donc considérée comme non pertinente et écartée de l'évaluation de la dangerosité des sédiments.

2.2.11 NICKEL 3,5-BIS(TERT-BUTYL-4-HYDROXYBENZOATE (1:2)

Identification et données physico-chimiques

Numéro CAS	52625-25-9							
EINECS	258-051-1							
Formule	C30H42NiO6							
Masse molaire	559,38							
Solubilité	Pas de donnée							
Log Kow	Valeur moyenne estimée : Log Kow = 4,43 4,43 (Episuite) 4,42 (ChemAxon)							

Informations sur les interactions substance/matrice sédimentaire

Aucune donnée expérimentale n'a été identifiée au travers des recherches bibliographiques réalisées dans cette étude.

Les coefficients de partage log Kow retenus dans cette étude sont issus des logiciels de modélisation Episuite et ChemAxon. La valeur moyenne obtenue pour cette substance (log Kow = 4,43) indique que la molécule est à considérer comme lipophile et potentiellement bioaccumulable dans les tissus organiques riches en lipides (log Kow > 3).

Utilisation de cette substance

Cette substance est pré-enregistrée dans REACH. La date limite pour son enregistrement était fixée au 31/05/2013.

Le non enregistrement dans REACH depuis cette date peut se justifier des manières suivantes :

- la mise sur le marché européen de cette substance a été abandonnée par le producteur/importateur,
- le tonnage commercialisé sur le marché européen est inférieur à 1 tonne/an du fait de son caractère CMR.

Le nickel 3,5-bis(tert-butyl-4-hydroxybenzoate (1:2) n'est pas identifié dans l'inventaire INRS d'utilisation des produits CMR en France de 2005.

<u>Bilan sur la pertinence de conserver cette substance dans l'évaluation de la dangerosité</u>

Le log Kow moyen modélisé de cette substance rend possible sa présence dans les sédiments (Kow > 3). Néanmoins, les informations issues de REACH indiquent que la commercialisation ou l'importation de cette substance ne sont pas autorisées sur le territoire européen. Toutefois, cette réglementation ne s'applique à cette substance qu'au-delà d'un tonnage annuel d'1 tonne. Son utilisation en France n'est pas confirmée.

Au regard du très faible tonnage possible et non confirmé de cette substance sur

l'ensemble du territoire européen (< 1 tonne/an), cette substance est donc considérée comme non pertinente et écartée de l'évaluation de la dangerosité des sédiments.

2.3 Proposition de seuils

En excluant du champ des possibles les 11 substances précédemment mentionnées, les seuils « pire cas » évoluent pour atteindre les valeurs présentées dans le Tableau 3.

La démarche suivante a été menée sur la base de ce tableau :

- pour chaque élément, le seuil minimal de classement (toutes règles confondues) a été défini ;
- des révisions ont été apportées vis-à-vis des substances « doubles » (cf encadré spécifique ci-après) ;
- pour les règles de classement qui impliquent une sommation des concentrations des différentes substances concernées, l'ID a été calculé sur la base d'une concentration égale au seuil minimal de classement précédemment défini ; dans le cas où l'ID calculé dépasse la valeur de 1, une valeur révisée à la baisse du seuil minimal de classement a été proposée pour certaines substances afin de garantir un ID total inférieur à 1.

Le résultat de ces différentes étapes de la démarche est présenté dans le Tableau 4.

Tableau 3 : Seuils de classement « pire cas » révisés en excluant les 11 substances étudiées (en %)

	Tubleda o . Geallo de diagoement » piro das » Tevidos en excitadir los 11 dabetanese etadicos (en 70)																													
	HP 4-A	HP 4-B	HP 4-C	HP 5-A	HP 5-B	HP 5-C	HP 5-D	HP 5-E	HP 5-F	HP 6-A	HP 6-B	HP 6-C	HP 6-D	HP 6-E	HP 6-F	HP 6-G	HP 6-H	HP 6-I	HP 6-J	HP 6-K	HP 6-L	HP 7-A	HP 7-B	HP 8-A	HP 10-A	HP 10-B	HP 11-A	HP 11-B	HP 13-A	HP 13-B
	_		_		_			_	_						_		_				_									
As							0,33				0,1893	1,66								1,16		0,033		3,79	0,155				3,30	
Cd							0,54	3,07			0,1709	1,53	25,00	0,17			55,00		0,27	1,07	22,50	0,05	0,31		0,16	2,63	0,05	0,88		
Cr	0,34	0,28	5,36			5,36	0,30	0,52				1,61	1,45			7,80	17,66		0,16			0,0052		1,61	0,02	1,56	0,03	0,38	2,68	2,98
Cu		0,67	5,09										3,91																0,59	
Hg			17,00			17,00	0,59	7,05			0,1847	2,95	21,24	0,25		10,57			0,50	2,47				2,95	0,30	2,22		0,74		
Ni	0,17	3,21					0,13					2,26	4,46						0,17	1,59	4,01	0,013	0,34	0,80	0,039			0,13	0,38	1,31
Pb		10						10					25								22,5	0,1	1		0,3				6,04	
Zn		3,64	2,76			2,76		2,26					2,90								4,10	0,04		2,40		0,72			1,38	
PCB 28								10																						
PCB 52								10																						
PCB 101								10																						
PCB 118								10																						
PCB 138								10																						
PCB 153								10																						
PCB 180								10																						
Naphtalène													25										1							
Acénaphtène																														
Acénaphtylène														0,25				0,1												
Fluorène																														
Anthracène																														
Phénanthrène													25																	
Fluoranthène													25																	
Pyrène																														
Benzo [a] anthracène																						0,1								
Chrysène																						0,1						1		
Benzo [b]																						0,1								
fluoranthène Benzo [k]																														\vdash
Benzo [k] fluoranthène																						0,1								
Benzo [a] pyrène						1																0,1			0,3		0,1		10	\square
Di benzo [a,h] anthracène																						0,1								
Benzo [g,h,i] pérylène																														
Indéno [1,2,3-cd] pyrène																							1							
TBT			20				1					5					55								0,3					

INERIS- DRC-16-149793-00431B Page 28 sur 47

Tableau 4 : Démarche d'élaboration des seuils

	Etape 1 Seuil minimal de classement garantissant un ID < 1 pour les règles sans sommation	Etape 2 Arrondi + révision des seuils impliquant des substances doubles ⁸	Etape 3 Révision à la baisse pour garantir un ID < 1 pour les règles impliquant une sommation
Arsenic	0,0330	0,0330	0,0330
Cadmium	0,0539	0,0530	0,0530
Chrome	0,0052	0,0250	0,0250
Cuivre	0,5946	0,5940	0,4000
Mercure	0,1847	0,1840	0,0500
Nickel	0,0131	0,0130	0,0130
Plomb	0,1	0,1000	0,1000
Zinc	0,0360	0,7230	0,7230
PCB 28	10,0000	10,0000	10,0000
PCB 52	10,0000	10,0000	10,0000
PCB 101	10,0000	10,0000	10,0000
PCB 118	10,0000	10,0000	10,0000
PCB 138	10,0000	10,0000	10,0000
PCB 153	10,0000	10,0000	10,0000
PCB 180	10,0000	10,0000	10,0000
Naphtalène	1,0000	1,0000	1,0000
Acénaphtylène	0,1000	0,1000	0,0500
Phénanthrène	25,0000	25,0000	5,0000
Fluoranthène	25,0000	25,0000	5,0000
Benzo(a)anthracène	0,1000	0,1000	0,1000
Chrysène	0,1000	0,1000	0,1000
Benzo(b)fluoranthèn e	0,1000	0,1000	0,1000
Benzo(k)fluoranthèn	0.4000	0.4000	0.4000
e Benzo(a)pyrène	0,1000	0,1000	0,1000
Dibenzo(a,h)anthrac	0,1000	0,1000	0,1000
ène	0,1000	0,1000	0,1000
Indéno(1,2,3- cd)pyrène	1,0000	1,0000	1,0000
Tributylétain	0,3000	0,3000	0,3000

NB : les nombres en rouge mettent en évidence les évolutions majeures par rapport à l'étape précédente.

INERIS- DRC-16-149793-00431B

⁸ Voir encadré ci-après.

Cas des « substances doubles »:

Quatre substances « pire cas » particulièrement classantes impliquent au moins deux métaux dans leur composition :

- le chrome et le plomb pour trois d'entre elles (lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77605.], lead sulfochromate yellow; C.I. Pigment Yellow 34; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77603.] et lead chromate)
- le zinc et le chrome pour la dernière (zinc chromates including zinc potassium chromate).

Pour ces substances, le seuil de classement a été décliné pour chacun des éléments concernés (en deux seuils distincts), mais il suffit qu'un seul des deux seuils soit respecté pour que la substance en question ne puisse être en présence à une concentration classante.

Ainsi, pour que [ZnCrO₄] < 0,1 %, il suffit que :

- [Zn] < 0,0360 % ou
- [Cr] < 0,0287 %.

De même, pour que les différentes substances impliquant le plomb et le chrome soit présentes à moins de 0,1 %, il suffit que :

- [Pb] < 0,1 % ou
- [Cr] < respectivement 0,0052 / 0,0083 / 0,0161 %.

La condition pour le plomb étant vérifiée grâce au seuil qui lui est attribué, le seuil pour le chrome peut être relevé à la valeur de 0,0255 % (arrondi à 0,0250 %), seuil associé au chromate de strontium, qui est la substance la plus classante suivante pour le chrome, toutes règles confondues (voir annexe 1).

De plus, le seuil relatif au plomb pourrait être relevé jusqu'à 0,3 % (seuil le plus pénalisant après le seuil de 0,0514 %) si le chrome respecte la condition plus contraignante d'être inférieur à 0,1 %. Ce dernier point est traduit de façon opérationnelle par la note associée à l'astérisque du Tableau 5.

De fait, la condition relative au chrome dans le cas du chromate de zinc étant vérifiée grâce à la valeur précédemment établie, le seuil pour le zinc associé à la propriété HP 7-A peut être levé (car aucune autre substance dangereuse associée au zinc ne relève de cette règle de classement – voir annexe 1).

Cas particulier des PCB

L'approche « pire cas », retenue dans cette étude, conduit à établir un seuil de classement dangereux de 10 % pour chaque PCB considéré, soit 10 000 mg/kg MS, sur la base de la classification harmonisée de ces substances.

Toutefois, une disposition spécifique de la décision 2014/955/UE prévoit que des déchets contenant certains des polluants visés par le règlement POP⁹, à des concentrations dépassant les seuils indiqués à l'annexe IV de ce règlement, soient d'office considérés comme dangereux.

Ce seuil réglementaire de 50 mg/kg MS a donc été retenu dans la suite de l'étude comme seuil de classement dangereux pour les PCB.

A l'issue de la démarche d'élaboration, les seuils et règles spécifiques de classement retenus sont repris dans le Tableau 5.

-

⁹ Règlement n°850/2004 du 29/04/04 concernant les polluants organiques persistants et modifiant la directive 79/117/CEE.

Tableau 5 : Seuils proposés

	Proposition de seuils (%)						
Arsenic	0,0330						
Cadmium	0,0530						
Chrome VI	0,0250						
Cuivre	0,4000						
Mercure	0,0500						
Nickel	0,0130						
Plomb	0,1000 ^(*)						
Zinc	0,7230						
PCB 28							
PCB 52							
PCB 101							
PCB 118	0,0050 pour la somme des 7 congénères						
PCB 138							
PCB 153							
PCB 180							
Naphtalène	1,0000						
Acénaphtylène	0,0500						
Phénanthrène	5,0000						
Fluoranthène	5,0000						
Benzo(a)anthracène	0,1000						
Chrysène	0,1000						
Benzo(b)fluoranthène	0,1000						
Benzo(k)fluoranthène	0,1000						
Benzo(a)pyrène	0,1000						
Dibenzo(a,h)anthracène	0,1000						
Indéno(1,2,3-cd)pyrène	1,0000						
Tributylétain	0,3000						

^{(*):} Si le sédiment ne respecte pas la valeur de 1000 ppm fixée pour le plomb, le sédiment peut être encore jugé non dangereux si sa teneur en plomb n'excède pas 3000 ppm et celle en chrome VI reste inférieure à 50 ppm.

3. <u>COLLECTE DE DONNEES DE COMPOSITION CHIMIQUE DES SEDIMENTS FRANÇAIS</u>

Afin de confronter la méthodologie d'évaluation de la dangerosité des sédiments développée dans ce rapport à des données réelles de terrain, plusieurs organismes ont été contactés. Les informations demandées étaient les concentrations mesurées dans les sédiments pour les paramètres listés dans l'arrêté du 9 août 2006 (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn, HAP, PCB et TBT).

3.1 ORGANISMES SOLLICITES

Ces organismes sont des gestionnaires de voies d'eau ou des services en charge du suivi ou du contrôle de la qualité des sédiments. Deux des plus importants gestionnaires de voies d'eau navigables ont été sollicités :

- Voies navigables de France (VNF): gestion de 6 700 km de voies d'eau navigables,
- Compagnie Nationale du Rhône (CNR) : gestion de 330 km de voies d'eau navigables.

Ces deux gestionnaires couvrent 82,7 % des 8500 km du réseau de voies navigables français.

Trois agences de l'eau ont également fourni des données chimiques pour les sédiments analysés sur leurs territoires :

- Agence de l'Eau Adour Garonne,
- Agence de l'Eau Rhin Meuse,
- Agence de l'Eau Artois Picardie.

La base de données du Réseau National de surveillance des Ports Maritimes (REPOM) a également été utilisée pour obtenir des informations sur les sédiments marins.

3.2 Types de données collectées

3.2.1 **VNF**

Les informations fournies par VNF concernent les résultats des analyses préalables aux opérations de dragages. Il s'agit de données pour des sédiments fluviaux en place qui ont depuis été dragués.

Ces données nationales couvrent l'ensemble des directions territoriales (DT) de VNF, à l'exception de la DT Centre Bourgogne, sur la période 1994 à 2015.

3.2.2 **CNR**

La CNR a transmis une base de données qualité physico-chimique des sédiments du Rhône et de ses affluents.

Ces données concernent la période 2006 à 2015. Aucune information sur l'étape de prélèvements de ces sédiments fluviaux n'est précisée (en place ou à l'issue du dragage).

3.2.3 AGENCES DE L'EAU

Les données transmises par les agences de l'eau concernent les analyses de sédiments réalisées dans le cadre du suivi de la qualité des cours d'eaux. Elles concernent donc l'analyse de sédiments fluviaux en place.

Les périodes couvertes par les bases de données transmises sont :

- Adour Garonne: 2013

Rhin Meuse : de 2000 à 2012Artois Picardie : de 2011 à 2012

3.2.4 **REPOM**

Ce réseau de surveillance a été mis en place en 1977 par le Ministère chargé de l'Environnement. Il a pour objectif d'évaluer et de suivre l'évolution de la qualité des eaux et des sédiments des bassins portuaires afin, à partir des résultats obtenus, d'identifier l'impact de ces installations portuaires sur les usages du milieu, pratiqués dans l'enceinte portuaire ou à proximité. Il est opéré par les cellules de la qualité des eaux littorales (CQEL), avec la participation financière de nombreux gestionnaires de ports.

Sont concernés les différents types de ports suivants (à partir d'une certaine importance) :

- ports militaires,
- ports de commerce : ports de fret et ports à passagers,
- ports de pêche,
- ports de plaisance.

En 2000, le REPOM concernait 186 ports dans 24 départements littoraux en métropole et 3 ports outre-mer. Le programme de surveillance porte sur deux compartiments : l'eau et les sédiments.

Les données du REPOM ne sont pas liées aux activités de dragage. Elles concernent uniquement l'analyse de sédiments marins en place.

Dans cette étude, les données de six départements ont été utilisées :

- Pas-de-Calais (62) : de 1998 à 2014

- Calvados (14) : de 2002 à 2012

- Seine-Maritime (76): de 2000 à 2012

INERIS- DRC-16-149793-00431B

Nord (59): de 1997 à 2007

- Vendée (85) : de 1998 à 2012

- Bouches-du-Rhône (13): de 2010 à 2013

3.3 REPARTITION DES DONNEES UTILISEES

3.3.1 REPARTITION PAR ORGANISMES

Les paramètres renseignés dans les bases sont multiples. Conformément au mandat du groupe de travail, seules les données concernant les paramètres listés dans l'arrêté du 9 août 2006 ont été utilisées dans cette étude.

Au total les informations collectées concernent 6698 échantillons de sédiments répartis comme indiqué sur la Figure 1. Les bases fournies par les différents organismes ont ensuite été compilées afin de garantir l'anonymat des données utilisées.

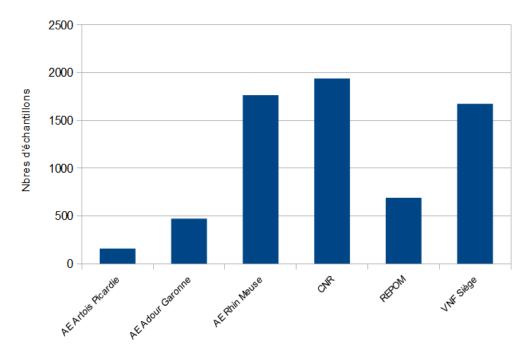


Figure 1 : Répartition des données par organismes

3.3.2 REPARTITION MARINS/FLUVIAUX

La majorité des données concernent des sédiments fluviaux (89,7%). Les données pour les sédiments marins (10,3%) ne sont fournies que par un seul organisme (REPOM).

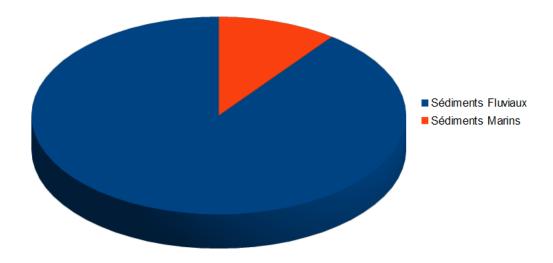


Figure 2 : Répartition des données entre sédiments marins et fluviaux

3.4 DESCRIPTION DES DONNEES UTILISEES PAR ELEMENT

Les bases de données comportaient plusieurs concentrations inférieures aux limites de quantification (< LQ). Afin d'intégrer ces données dans les interprétations, ces teneurs ont été considérées comme égales aux limites de quantification, ce qui constitue une hypothèse majorante.

3.4.1 ÉLEMENTS TRACES METALLIQUES

Les données en ETM sont nombreuses et couvrent en moyenne 85 % des échantillons de la base compilée.

Tableau 6 : Nombre et pourcentage d'échantillons disposant d'analyses pour les ETM

ETM	Arsenic	senic Cadmium Chrome Cuivre		Cuivre	Mercure	Nickel	Plomb		
Nbre éch.	5461	5976	5464	5464	5961	5975	5971		
% total éch. Base	81,53%	89,22%	81,58%	81,58%	89,00%	89,21%	89,15%		

Le cadmium est l'élément le mieux renseigné avec des concentrations pour 89,22 % des échantillons de la base. L'arsenic est celui avec le nombre de données le plus faible mais avec tout de même plus de 81,5 % d'échantillons renseignés.

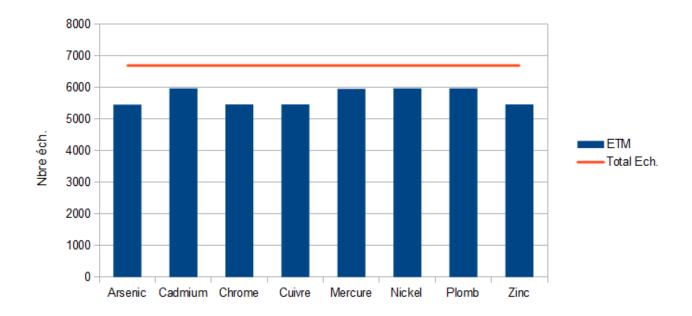


Figure 3 : Nombre d'échantillons disposant d'analyses pour les ETM

Les gammes de concentration par élément sont présentées dans le Tableau 7.

Tableau 7 : Gammes de concentrations mesurées en ETM

	Valeurs				
Métaux	Min	Max	Moy		
Arsenic	0,00	370,00	13,34		
Cadmium	0,00	2226,00	8,38		
Chrome	0,00	900,00	44,26		
Cuivre	0,00	3170,00	52,61		
Mercure	0,00	99,30	0,80		
Nickel	0,00	625,00	27,24		
Plomb	0,00	16670,00	88,94		
Zinc	0,00	13894,00	276,68		

3.4.2 HYDROCARBURES AROMATIQUES POLYCYCLIQUES (HAP)

Les HAP considérés dans cette étude sont les 16 retenus par l'US EPA. Ils sont également ceux visés par l'arrêté du 9 août 2006 : acénaphtène, acénaphtylène, anthracène, benzo(a)anthracène, benzo(a)pyrène, benzo(b)fluoranthène, benzo(g,h,i)pérylène, benzo(k)fluoranthène, chrysène, dibenzo(a,h)anthracène, fluoranthène, indéno(1,2,3-cd)pyrène, naphtalène, phénanthrène, et pyrène.

Les données HAP sont hétérogènes en fonction des bases. Certaines données correspondent aux résultats obtenus pour chacun des 16 HAP. D'autres bases ne fournissent des informations que pour la somme des 16 HAP.

La base compilée comprend 5616 échantillons avec au moins une mesure de HAP (au moins un des 16 congénères et/ou une mesure de HAP totaux) soit 84 % des échantillons de la base compilée.

Tableau 8 : Nombre et pourcentage d'échantillons disposant d'analyses pour les HAP

НДР	Acénaphtène	Acénaphtylène	Anthracène	Benzo(a)anthracène	Benzo(a)pyrène	Benzo(b)fluoranthène	Benzo(b+k)fluoranthène	Benzo(g,h,i)pérylène	Benzo(k)fluoranthène	dnysène	Dibenzo(a,h)anthracène	Fluoranthène	Fluorène	Indéno(1,2,3-cd)pyrène	Naphtalène	Phénanthrène	Pyrène	« HAP totaux »
Nbr éch.	3867	3903	2265	4193	4071	4072	980	4063	4071	2406	4044	4246	4033	4052	4009	4182	4183	2905
% Total éch. Base	57,7%	58,3%	33,8%	62,6%	60,8%	60,8%	14,6%	60,7%	60,8%	35,9%	60,4%	63,4%	60,2%	60,5%	59,9%	62,4%	62,5%	43,4%

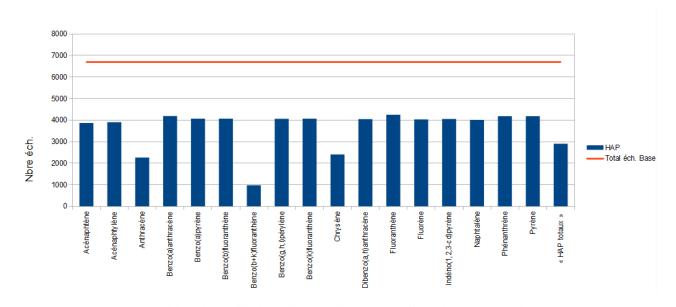


Figure 4 : Nombre d'échantillons disposant d'analyses pour les HAP

Les gammes de concentrations par éléments sont présentées dans le Tableau 9.

Tableau 9 : Gammes de concentrations mesurées en HAP

		Vale	eurs en mg/kg	MS
	HAP	Min	Max	Moy
	Acénaphtène	0,00	238,00	0,15
	Acénaphtylène	0,01	1,57	0,07
	Anthracène	0,00	223,00	0,37
	Benzo(a)anthracène	0,00	206,00	0,38
	Benzo(a)pyrène	0,00	153,00	0,36
	Benzo(b)fluoranthène	0,00	129,00	0,38
	Benzo(b+k)fluoranthène	0,00	24,10	0,65
D	Benzo(g,h,i)pérylène	0,00	71,09	0,23
Données par éléments	Benzo(k)fluoranthène	0,00	74,00	0,20
elements	Chrysène	0,00	155,00	0,55
	Dibenzo(a,h)anthracène	0,00	5,60	0,06
	Fluoranthène	0,00	528,00	0,82
	Fluorène	0,00	366,00	0,21
	Indéno(1,2,3-cd)pyrène	0,00	79,79	0,26
	Naphtalène	0,00	5,50	0,04
	Phénanthrène	0,01	666,00	0,58
	Pyrène	0,00	343,00	0,63
Données « HAP	totaux »	0,00	348,40	2,88

3.4.3 POLYCHLOROBIPHENYLES (PCB)

Les PCB considérés dans cette étude sont les 7 congénères visés par l'arrêté du 9 août 2006 : PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 153, et PCB 180.

Comme pour les HAP, les données PCB sont hétérogènes en fonction des bases. Certaines données correspondent aux résultats obtenus pour chacun des 7 congénères. D'autres bases ne fournissent des informations que pour la somme des 7 PCB.

La base compilée comprend 5582 échantillons avec au moins une mesure de PCB (au moins un des 7 congénères et/ou une mesure de PCB totaux) soit 83 % des échantillons de la base compilée.

Tableau 10 : Nombre et pourcentage d'échantillons disposant d'analyses pour les PCB

PCB	PCB 101	PCB 118	PCB 138	PCB 153	PCB 180	PCB 28	PCB 52	PCB totaux
Nbr éch.	4365	4367	4359	4366	4366	4366	4367	4260
% Total éch. Base	65,17%	65,20%	65,08%	65,18%	65,18%	65,18%	65,20%	63,60%

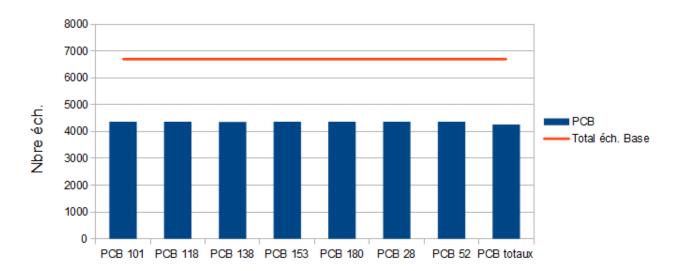


Figure 5 : Nombre d'échantillons disposant d'analyses pour les PCB

Les gammes de concentrations par éléments sont présentées dans le Tableau 11.

Tableau 11 : Gammes de concentrations mesurées en PCB

	Val	Valeurs en mg/kg MS				
PCB	Min	Max	Moy			
PCB 101	0,000	0,910	0,009			
PCB 118	0,000	0,806	0,007			
PCB 138	0,000	0,946	0,012			
PCB 153	0,000	1,010	0,013			
PCB 180	0,000	0,881	0,011			
PCB 28	0,000	0,380	0,006			
PCB 52	0,000	0,537	0,007			
PCB totaux	0,000	340,000	0,383			

3.4.4 TRIBUTYLETAIN (TBT)

L'arrêté du 9 août 2006 n'intègre l'analyse du TBT que pour les sédiments marins. Les données pour cet élément dans la base compilée sont donc moins nombreuses (26,8 % des échantillons).

On notera toutefois que le nombre de données « TBT » disponibles est plus important que le nombre d'échantillons de sédiments marins de la base (10,3%), ce qui indique que cette analyse est réalisée pour des sédiments fluviaux alors qu'elle n'est pas imposée par la réglementation.

Les gammes de concentration pour cet élément sont présentées dans le Tableau 12.

Tableau 12 : Gammes de concentrations mesurées en TBT

	Valeurs en mg/kg MS				
ТВТ	Min Max Moy				
Tributylétain	0,00	118,00	0,31		

4. <u>CONFRONTATION DES DONNEES COLLECTEES AUX SEUILS</u> PIRE CAS ET DISCUSSION

4.1 RESULTATS POUR LES ETM

La synthèse de la comparaison, pour chaque échantillon de la base, et pour chaque ETM, entre la concentration mesurée et le seuil proposé dans le Tableau 5 est réalisée dans le Tableau 13.

Tableau 13 : Nombre et pourcentage d'échantillons classés par les seuils associés aux ETM

ETM	Arsenic	Cadmium	Chrome	Cuivre	Mercure	Nickel	Plomb	Zinc
Seuil dangerosité proposé (mg/kg MS)	330	530	250	4000	500	130	1000	7230
Nbre d'échantillons classés	2	20	43	0	0	75	41	10
% Total échantillons base	0,0%	0,3%	0,6%	0,0%	0,0%	1,1%	0,6%	0,1%

Le nickel est l'élément le plus classant : 1,1 % des échantillons de la base compilée présentent des teneurs en nickel supérieures au seuil « dangerosité » proposé (130 mg/kg MS).

Le plomb et le chrome sont les éléments les plus classant après le nickel. Toutefois, en utilisant la règle des concentrations combinées chrome/plomb, à savoir sur si un sédiment ne respecte pas la valeur de 1000 ppm fixée pour le plomb, le sédiment peut encore être jugé non dangereux si sa teneur en plomb n'excède pas 3000 ppm et si celle en chrome VI reste inférieure à 50 ppm, le pourcentage d'échantillons de la base classés dangereux à cause du plomb diminue à 0,5 % (35 échantillons au lieu de 41).

Les seuils pour l'arsenic et le cadmium sont très rarement dépassés, avec respectivement 0,03 % et 0,3 % des échantillons présentant des teneurs supérieures aux seuils « dangerosité » proposés (330 et 530 mg/kg MS).

Aucune des teneurs en mercure et en cuivre observées dans la base compilée ne classe les sédiments dangereux.

4.2 RESULTATS POUR LES HAP

Seuls 11 des 16 HAP disposent de seuils : acénaphtylène, benzo(a)anthracène, benzo(a)pyrène, benzo(b)fluoranthène, benzo(k)fluoranthène, chrysène, dibenzo(a,h)anthracène, fluoranthène, indéno(1,2,3-cd)pyrène, naphtalène, et phénanthrène.

Les 5 autres HAP ne présentent pas de mentions de danger associées aux propriétés de danger HP étudiées, et n'ont donc pas d'influence sur l'éventuel classement en dangerosité au titre de ces propriétés.

La synthèse de la comparaison, pour chaque échantillon de la base, et pour chaque HAP, entre la concentration mesurée et le seuil proposé dans le Tableau 5 est réalisée dans le Tableau 14.

Tableau 14 : Nombre et pourcentage d'échantillons classés par les seuils associés aux HAP

НАР	Acénaphtylène	Benzo(a)anthracène	Benzo(a)pyrène	Benzo{b∦luoranthène	Benzo{k∦luoranthène	Chrysène	Dibenzo(a,h)anthracène	Fluoranthène	Indéno(1,2,3-cd)pyrène	Naphtalène	Phénanthrène
Seuil dangerosité proposé (mg/kg MS)	500	1000	1000	1000	1000	1000	1000	50000	10000	10000	50000
Nbre d'échantillons classés	0	0	0	0	0	0	0	0	0	0	0
% Total échantillons base	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%

D'après le Tableau 14, aucune des teneurs des 11 HAP disposant de seuils « dangerosité » dans la base compilée ne classe les sédiments dangereux.

Toutefois, pour de nombreux sédiments de la base, la seule donnée de concentration disponible concerne la somme de 16 HAP (ou « HAP totaux »). Dans une approche majorante, le seuil « dangerosité » minimal parmi les 11 seuils attribués individuellement aux HAP pourrait être utilisé pour les HAP totaux.

Ce seuil minimal de 500 mg/kg MS a été comparé aux données de concentration en HAP totaux, ainsi qu'aux données de concentrations individuelles des 5 HAP non pris en considération à l'étape précédente, et aucun sédiment ne ressort classé par comparaison à ce seuil plus pénalisant. Si l'on considère la somme des concentrations individuelles des 16 HAP de la base compilée, l'impact de ce seuil de 500 mg/kg MS est minime puisque seuls 3 échantillons dépassent cette valeur de référence, soit 0,05% des échantillons disposant de données individuelles de concentrations en HAP. Aussi, le remplacement des 11 seuils individuels pour les HAP au profit d'un seul et unique seuil situé à 500 mg/kg MS pour le total des HAP semble apporter une simplification sans pour autant avoir d'impact significatif par son caractère pénalisant.

4.3 RESULTATS POUR LES PCB

En utilisant le seuil réglementaire de 50 mg/kg MS pour les PCB totaux, 0,1 % des échantillons de la base compilée présentent des teneurs supérieures au seuil de dangerosité.

Tableau 15 : Nombre et pourcentage d'échantillons classés par le seuil réglementaire PCB

PCB	Σ7 congénères
Seuil dangerosité proposé (mg/kg MS)	50
Nbre d'échantillons classés	7
% Total échantillons base	0,1%

4.4 RESULTATS POUR LE TBT

La synthèse de la comparaison, pour chaque échantillon de la base, entre la concentration mesurée en TBT et le seuil proposé dans le Tableau 5 est réalisée dans le Tableau 16.

Tableau 16 : Nombre et pourcentage d'échantillons classés par le seuil associé au TBT

ТВТ	Tributylétain
Seuil dangerosité proposé (mg/kg MS)	3000
Nbre d'échantillons classés	0
% Total échantillons base	0,0%

Aucune des teneurs en TBT dans la base compilée ne dépasse le seuil « dangerosité » de 3000 mg/kg MS.

4.5 RESULTATS COMPILES

En considérant l'ensemble des substances retenues pour l'étude et les seuils proposés, 2,2 % des échantillons de la base compilée sont potentiellement dangereux, essentiellement à cause du nickel, du plomb et du chrome.

Les teneurs en mercure, cuivre et TBT de la base ne classent aucun échantillon comme potentiellement dangereux.

5. CONCLUSION

La synthèse des seuils pouvant être établis sur la base de l'étude réalisée est présentée dans le Tableau 17. Appliqués à des sédiments, ils permettent, de par leur construction, de garantir le caractère non dangereux des sédiments au titre des propriétés HP 4, HP 5, HP 6, HP 7, HP 8, HP 10, HP 11, et HP 13.

Tableau 17 : Synthèse des seuils proposés

	Proposition de seuils individuels (mg/kg)	Proposition de seuils groupés (mg/kg)		
Arsenic	330	330		
Cadmium	530	530		
Chrome VI	250	250		
Cuivre	4000	4000		
Mercure	500	500		
Nickel	130	130		
Plomb	1000 ^(*)	1000(*)		
Zinc	7230	7230		
PCB 28				
PCB 52				
PCB 101	EO nour la comma dec	EO nour la comma dos		
PCB 118	50 pour la somme des 7 congénères	50 pour la somme des 7 congénères		
PCB 138	7 congeneres	7 Congeneres		
PCB 153				
PCB 180				
Naphtalène	10000			
Acénaphtylène	500			
Phénanthrène	50000			
Fluoranthène	50000			
Benzo(a)anthracène	1000	FOO nour la comma dec		
Chrysène	1000	500 pour la somme des congénères		
Benzo(b)fluoranthène	1000	Congeneres		
Benzo(k)fluoranthène	1000			
Benzo(a)pyrène	1000			
Dibenzo(a,h)anthracène	1000			
Indéno(1,2,3-cd)pyrène	10000			
Tributylétain	3000	3000		

^{(*):} Si le sédiment ne respecte pas la valeur de 1000 ppm fixée pour le plomb, le sédiment peut être encore jugé non dangereux si sa teneur en plomb n'excède pas 3000 ppm et celle en chrome VI reste inférieure à 50 ppm.

Il convient de noter que les substances dangereuses du chrome sont associées à des formes de degré d'oxydation VI. Aussi, le seuil proposé est-il à considérer pour le chrome VI, mais à appliquer au chrome total en l'absence de mesure spécifique du chrome VI. En l'absence de données spécifiques sur le chrome VI dans la base, ce sont donc les concentrations en chrome total qui ont été comparées au seuil proposé de 250 mg/kg MS. Aucune donnée n'a pu être recensée sur la proportion généralement rencontrée dans les sédiments entre chrome VI et chrome III. Il semblerait donc pertinent de promouvoir une mesure systématique du chrome VI dans les sédiments. Cela permettrait en effet une comparaison plus juste au seuil proposé.

Les recherches bibliographiques réalisées dans cette étude se sont focalisées sur les substances les plus pénalisantes. Des compléments bibliographiques pourraient encore être apportés sur plusieurs substances et permettraient éventuellement de revoir les seuils à la hausse, de façon globale comme dans le cadre du présent rapport, ou de façon individuelle pour le classement spécifique d'un sédiment particulier.

Enfin, il convient de rappeler qu'une limite à cette étude réside toutefois dans le fait que cette approche simplifiée s'intéresse uniquement aux éléments et substances suivis dans le cadre de la réglementation applicable aux opérations de dragage et donc couramment analysés dans les sédiments (8 ETM, HAP, PCB et TBT pour les sédiments marins), et que d'autres substances éventuellement en présence pourraient impacter le classement en dangerosité.

En outre, seules les propriétés HP 4, HP 5, HP 6, HP 7, HP 8, HP 10, HP 11, et HP 13 sont couvertes par cette étude. Les seuils proposés ne garantissent donc pas la non dangerosité vis-à-vis des autres propriétés de danger, en particulier HP 14 (écotoxique), qui doit être évaluée via une batterie d'essais écotoxicologiques spécifique à la matrice sédimentaire, développée ces dernières années.

LISTE DES ANNEXES

Repère	Désignation	Nb/Format pages
Annexe 1	Liste des substances « pire cas » pour l'arsenic	2 A4
Annexe 2	Liste des substances « pire cas » pour le cadmium	3 A4
Annexe 3	Liste des substances « pire cas » pour le chrome	4 A4
Annexe 4	Liste des substances « pire cas » pour le cuivre	1 A4
Annexe 5	Liste des substances « pire cas » pour le mercure	3 A4
Annexe 6	Liste des substances « pire cas » pour le nickel	16 A4
Annexe 7	Liste des substances « pire cas » pour le plomb	3 A4
Annexe 8	Liste des substances « pire cas » pour le zinc	2 A4

NB : Dans toutes les annexes, les seuils convertis par élément sont exprimés en % massique.

Les substances en vert sont celles identifiées comme présentant un enjeu particulier de classement et ayant fait l'objet d'une étude bibliographique ciblée (voir paragraphe 2.2).

Les substances en bleu sont celles faisant l'objet d'une approche spécifique aux « substances doubles ».

ANNEXE 1 LISTE DES SUBSTANCES « PIRE CAS » POUR L'ARSENIC

		seuil
HP 5-D	М	converti
trinickel bis(arsenate); nickel(II) arsenate	226,985	0,3301
trinickel bis(arsenite)	226,985	0,3301
gallium arsenide	144,64	0,5180
nickel diarsenide; [1] nickel arsenide [2]	133,63	0,5607
nickel diarsenide; [1] nickel arsenide [2]	104,275	0,7185

		seuil
HP 5-E	M	converti
lead hydrogen arsenate	347,13	2,1583

		seuil
HP 6-B	М	converti
diarsenic trioxide; arsenic trioxide	98,92	0,1893

		seuil
HP 6-C	М	converti
lead hydrogen arsenate	347,13	1,0791
triethyl arsenate	226,1	1,6568
arsenic acid and its salts with the exception of those specified		
elsewhere in this Annex	141,94	2,6391
diarsenic pentaoxide; arsenic pentoxide; arsenic oxide	114,92	3,2597
arsenic	74,92	5,0000
arsenic compounds, with the exception of those specified elsewhere in		
this Annex	74,92	5,0000

		seuil
HP 6-K	M	converti
lead hydrogen arsenate	347,13	0,7554
triethyl arsenate	226,1	1,1598
arsenic acid and its salts with the exception of those specified		
elsewhere in this Annex	141,94	1,8474
diarsenic pentaoxide; arsenic pentoxide; arsenic oxide	114,92	2,2818
arsenic	74,92	3,5000
arsenic compounds, with the exception of those specified elsewhere in		
this Annex	74,92	3,5000

		seuil
HP 7-A	M	converti
lead hydrogen arsenate	347,13	0,0216
trinickel bis(arsenate); nickel(II) arsenate	226,985	0,0330
trinickel bis(arsenite)	226,985	0,0330
triethyl arsenate	226,1	0,0331
gallium arsenide	144,64	0,0518
arsenic acid and its salts with the exception of those specified		
elsewhere in this Annex	141,94	0,0528
nickel diarsenide; [1] nickel arsenide [2]	133,63	0,0561

diarsenic pentaoxide; arsenic pentoxide; arsenic oxide	114,92	0,0652
nickel diarsenide; [1] nickel arsenide [2]	104,275	0,0718
diarsenic trioxide; arsenic trioxide	98,92	0,0757

		seuil
HP 8-A	М	converti
diarsenic trioxide; arsenic trioxide	98,92	3,7869

		seuil
HP 10-A	M	converti
lead hydrogen arsenate	347,13	0,0647
gallium arsenide	144,64	0,1554

		seuil
HP 13-A	M	converti
trinickel bis(arsenate); nickel(II) arsenate	226,985	3,3007
trinickel bis(arsenite)	226,985	3,3007
nickel diarsenide; [1] nickel arsenide [2]	133,63	5,6065
nickel diarsenide; [1] nickel arsenide [2]	104,275	7,1848

LISTE DES SUBSTANCES « PIRE CAS » POUR LE CADMIUM

		seuil
HP 5-D	M	converti
cadmium sulphate	208,46	0,5392
cadmium chloride	183,31	0,6132
cadmium fluoride	150,4	0,7474
cadmium (non-pyrophoric); [1] cadmium oxide (non-pyrophoric) [2]	128,4	0,8755
cadmium sulphide	112,41	1,0000
cadmium (non-pyrophoric); [1] cadmium oxide (non-pyrophoric) [2]	112,41	1,0000
cadmium (pyrophoric)	112,41	1,0000

		seuil
HP 5-E	M	converti
cadmium iodide	366,21	3,0696
cadmiumhexafluorosilicate(2-); cadmium fluorosilica	254,48	4,4172
cadmium diformate; cadmiumformate	202,45	5,5525
cadmium cyanide	164,44	6,8359

		seuil
HP 6-B	M	converti
cadmium cyanide	164,44	0,1709

		seuil
HP 6-C	М	converti
cadmium iodide	366,21	1,5348
cadmiumhexafluorosilicate(2-); cadmium fluorosilica	254,48	2,2086
cadmium sulphate	208,46	2,6962
cadmium diformate; cadmiumformate	202,45	2,7762
cadmium chloride	183,31	3,0661
cadmium fluoride	150,4	3,7370

HP 6-D	M	seuil converti
cadmium compounds, with the exception of cadmium sulphoselenide		
(xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide		
(xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide		
(xCdS.yHgS), and those specified elsewhere in this Annex	112,41	25,0000
cadmium sulphide	112,41	25,0000

		seuil
HP 6-E	М	converti
cadmium cyanide	164,44	0,1709

		seuil
HP 6-H	M	converti
cadmium compounds, with the exception of cadmium sulphoselenide	е	
(xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide	e	
(xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulph	nide	
(xCdS.yHgS), and those specified elsewhere in this Annex	112,41	55,0000

		seuil
HP 6-J	M	converti
cadmium sulphate	208,46	0,2696
cadmium chloride	183,31	0,3066
cadmium cyanide	164,44	0,3418
cadmium fluoride	150,4	0,3737
cadmium (non-pyrophoric); [1] cadmium oxide (non-pyrophoric) [2]	128,4	0,4377
cadmium (non-pyrophoric); [1] cadmium oxide (non-pyrophoric) [2]	112,41	0,5000
cadmium (pyrophoric)	112,41	0,5000

		seuil
HP 6-K	M	converti
cadmium iodide	366,21	1,0743
cadmiumhexafluorosilicate(2-); cadmium fluorosilica	254,48	1,5460
cadmium diformate; cadmiumformate	202,45	1,9434

LID 0.1	.,	seuil
HP 6-L	M	converti
cadmium compounds, with the exception of cadn	•	
(xCdS.yCdSe), reaction mass of cadmium sulphic	de with zinc sulphide	
(xCdS.yZnS), reaction mass of cadmium sulphide	with mercury sulphide	
(xCdS.yHgS), and those specified elsewhere in the	nis Annex 112,41	22,5000

		seuil
HP 7-A	M	converti
cadmium sulphate	208,46	0,0539
cadmium chloride	183,31	0,0613
cadmium fluoride	150,4	0,0747
cadmium (non-pyrophoric); [1] cadmium oxide (non-pyrophoric) [2]	128,4	0,0875
cadmium sulphide	112,41	0,1000
cadmium (non-pyrophoric); [1] cadmium oxide (non-pyrophoric) [2]	112,41	0,1000
cadmium (pyrophoric)	112,41	0,1000

		seuil
HP 7-B	M	converti
cadmium iodide	366,21	0,3070
cadmiumhexafluorosilicate(2-); cadmium fluorosilica	254,48	0,4417
cadmium diformate; cadmiumformate	202,45	0,5552
cadmium cyanide	164,44	0,6836

		seuil
HP 10-A	M	converti
cadmium sulphate	208,46	0,1618
cadmium chloride	183,31	0,1840
cadmium fluoride	150,4	0,2242

		seuil
HP 10-B	M	converti
cadmium (non-pyrophoric); [1] cadmium oxide (non-pyrophoric) [2]	128,4	2,6264
cadmium sulphide	112,41	3,0000
cadmium (non-pyrophoric); [1] cadmium oxide (non-pyrophoric) [2]	112,41	3,0000
cadmium (pyrophoric)	112,41	3,0000

		seuil
HP 11-A	M	converti
cadmium sulphate	208,46	0,0539
cadmium chloride	183,31	0,0613
cadmium fluoride	150,4	0,0747

		seuil
HP 11-B	M	converti
cadmium (non-pyrophoric); [1] cadmium oxide (non-pyrophoric) [2]	128,4	0,8755
cadmium sulphide	112,41	1,0000
cadmium (non-pyrophoric); [1] cadmium oxide (non-pyrophoric) [2]	112,41	1,0000
cadmium (pyrophoric)	112,41	1,0000

LISTE DES SUBSTANCES « PIRE CAS » POUR LE CHROME

		seuil
HP 4-A	M	converti
chromyl dichloride; chromic oxychloride	154,9	0,3357
chromium (VI) trioxide	99,99	0,5201
dichromium tris(chromate); chromium III chromate; chromic chromate	93,995	0,5532
		3,000_
		seuil
HP 4-B	М	converti
pentasodium bis{7-[4-(1-butyl-5-cyano-1,2-dihydro-2-hydroxy-4-		
methyl-6-oxo-3-pyridylazo)phenylsulfonylamino]-5'-nitro-3,3'-		
disulfonatonaphthalene-2-azobenzene-1,2'-diolato} chromate (III)	1872,54	0,2777
trisodium bis(2-(5-chloro-4-nitro-2-oxidophenylazo)-5-sulphonato-1-	000.50	0.5260
naphtholato)chromate(1-) lithium sodium (4-((5-chloro-2-hydroxyphenyl)azo)-2,4-dihydro-5-	968,53	0,5369
methyl-3H-pyrazol-3-onato(2-))(3-((4,5-dihydro-3-methyl-1-(4-		
methylphenyl)-5-oxo-1H-pyrazol-4-yl)azo)-4-hydroxy-5-		
nitrobenzenesulfonato(3-)) chromate(2-)	762,94	0,6816
		seuil
HP 4-C	M	converti
potassium chromate	194,19	5,3556
		seuil
HP 5-C	M	converti
potassium chromate	194,19	5,3556
		seuil
HP 5-D	M	converti
nickel chromate	174,7	0,2977
sodium chromate	161,97	0,3210
potassium dichromate	147,09	0,3535
nickel dichromate	137,35	0,3786
andium diahramata	120 005	0,3970
sodium dichromate	130,985	
	1	0,4126
ammonium dichromate	126,03	
	1	0,4126 0,5201
ammonium dichromate	126,03	0,5201
ammonium dichromate	126,03	
ammonium dichromate chromium (VI) trioxide	126,03 99,99	0,5201 seuil
ammonium dichromate chromium (VI) trioxide HP 5-E lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This substance is identified in the Colour Index by Colour Index Constitution	126,03 99,99 M	0,5201 seuil converti
ammonium dichromate chromium (VI) trioxide HP 5-E lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77605.]	126,03 99,99	0,5201 seuil
ammonium dichromate chromium (VI) trioxide HP 5-E lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77605.] tetradecylammonium bis(1-(5-chloro-2-oxidophenylazo)-2-	126,03 99,99 M 993,59	0,5201 seuil converti 0,5234
ammonium dichromate chromium (VI) trioxide HP 5-E lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77605.] tetradecylammonium bis(1-(5-chloro-2-oxidophenylazo)-2-naphtholato)chromate(1-)	126,03 99,99 M	0,5201 seuil converti 0,5234
ammonium dichromate chromium (VI) trioxide HP 5-E lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77605.] tetradecylammonium bis(1-(5-chloro-2-oxidophenylazo)-2-naphtholato)chromate(1-) lead sulfochromate yellow; C.I. Pigment Yellow 34; [This substance is	126,03 99,99 M 993,59	0,5201 seuil converti 0,5234
ammonium dichromate chromium (VI) trioxide HP 5-E lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77605.] tetradecylammonium bis(1-(5-chloro-2-oxidophenylazo)-2-naphtholato)chromate(1-) lead sulfochromate yellow; C.I. Pigment Yellow 34; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I.	126,03 99,99 M 993,59 859,83	0,5201 seuil converti 0,5234 0,6048
ammonium dichromate chromium (VI) trioxide HP 5-E lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77605.] tetradecylammonium bis(1-(5-chloro-2-oxidophenylazo)-2-naphtholato)chromate(1-) lead sulfochromate yellow; C.I. Pigment Yellow 34; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77603.]	126,03 99,99 M 993,59 859,83 626,45	0,5201 seuil converti 0,5234 0,6048
ammonium dichromate chromium (VI) trioxide HP 5-E lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77605.] tetradecylammonium bis(1-(5-chloro-2-oxidophenylazo)-2-naphtholato)chromate(1-) lead sulfochromate yellow; C.I. Pigment Yellow 34; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I.	126,03 99,99 M 993,59 859,83	0,5201 seuil converti 0,5234 0,6048
ammonium dichromate chromium (VI) trioxide HP 5-E lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77605.] tetradecylammonium bis(1-(5-chloro-2-oxidophenylazo)-2-naphtholato)chromate(1-) lead sulfochromate yellow; C.I. Pigment Yellow 34; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77603.]	126,03 99,99 M 993,59 859,83 626,45	0,5201 seuil converti 0,5234 0,6048

М

converti

HP 6-C

sodium chromate	161,97	1,6052
potassium dichromate	147,09	1,7676
sodium dichromate	130,985	1,9850
ammonium dichromate	126,03	2,0630
chromium (VI) trioxide	99,99	2,6003

		seuil
HP 6-D	M	converti
trilithium bis(4-((4-(diethylamino)-2-hydroxyphenyl)azo)-3-hydroxy-1-naphthalenesulfonato(3-))chromate(3-)	897,7	1,4481
lithium sodium (4-((5-chloro-2-hydroxyphenyl)azo)-2,4-dihydro-5-methyl-3H-pyrazol-3-onato(2-))(3-((4,5-dihydro-3-methyl-1-(4-methylphenyl)-5-oxo-1H-pyrazol-4-yl)azo)-4-hydroxy-5-		
nitrobenzenesulfonato(3-)) chromate(2-)	762,94	1,7039
strontium chromate	203,61	6,3848
zinc chromates including zinc potassium chromate	181,4	7,1665
calcium chromate	156,07	8,3296

		seuil
HP 6-G	M	converti
chromium (VI) trioxide	99,99	7,8008

		seuil
HP 6-H	M	converti
sodium chromate	161,97	17,6576
potassium dichromate	147,09	19,4439
sodium dichromate	130,985	21,8346
ammonium dichromate	126,03	22,6930

		seuil
HP 6-J	M	converti
sodium chromate	161,97	0,1605
potassium dichromate	147,09	0,1768
sodium dichromate	130,985	0,1985
ammonium dichromate	126,03	0,2063
chromium (VI) trioxide	99,99	0,2600

		seuil
HP 7-A	M	converti
lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This		
substance is identified in the Colour Index by Colour Index Constitution		
Number, C.I. 77605.]	993,59	0,0052
lead sulfochromate yellow; C.I. Pigment Yellow 34; [This substance is		
identified in the Colour Index by Colour Index Constitution Number, C.I.		
77603.]	626,45	0,0083
lead chromate	323,2	0,0161
strontium chromate	203,61	0,0255
potassium chromate	194,19	0,0268

zinc chromates including zinc potassium chromate	181,4	0,0287
nickel chromate	174,7	0,0298
sodium chromate	161,97	0,0321
calcium chromate	156,07	0,0333
chromyl dichloride; chromic oxychloride	154,9	0,0336
potassium dichromate	147,09	0,0354
nickel dichromate	137,35	0,0379
sodium dichromate	130,985	0,0397
ammonium dichromate	126,03	0,0413
chromium (VI) trioxide	99,99	0,0520
dichromium tris(chromate); chromium III chromate; chromic chromate	93,995	0,0553
Chromium (VI) compounds, with the exception of barium chromate and		
of compounds specified elsewhere in this Annex	52	0,1000

		seuil
HP 8-A	M	converti
sodium chromate	161,97	1,6052
chromyl dichloride; chromic oxychloride	154,9	1,6785
potassium dichromate	147,09	1,7676
sodium dichromate	130,985	1,9850
ammonium dichromate	126,03	2,0630
chromium (VI) trioxide	99,99	2,6003
dichromium tris(chromate); chromium III chromate; chromic chromate	93,995	2,7661

		seuil
HP 10-A	M	converti
lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This		
substance is identified in the Colour Index by Colour Index Constitution		
Number, C.I. 77605.]	993,59	0,0157
lead sulfochromate yellow; C.I. Pigment Yellow 34; [This substance is		
identified in the Colour Index by Colour Index Constitution Number, C.I.		
77603.]	626,45	0,0249
lead chromate	323,2	0,0483
sodium chromate	161,97	0,0963
potassium dichromate	147,09	0,1061
nickel dichromate	137,35	0,1136
sodium dichromate	130,985	0,1191
ammonium dichromate	126,03	0,1238

		seuil
HP 10-B	M	converti
chromium (VI) trioxide	99,99	1,5602

		seuil
HP 11-A	M	converti
potassium chromate	194,19	0,0268
sodium chromate	161,97	0,0321

chromyl dichloride; chromic oxychloride	154,9	0,0336
potassium dichromate	147,09	0,0354
sodium dichromate	130,985	0,0397
ammonium dichromate	126,03	0,0413
chromium (VI) trioxide	99,99	0,0520

		seuil
HP 11-B	M	converti
nickel dichromate	137,35	0,3786

HP 13-A	М	seuil converti
potassium chromate	194,19	2,6778
zinc chromates including zinc potassium chromate	181,4	2,8666
nickel chromate	174,7	2,9765
sodium chromate	161,97	3,2105
chromyl dichloride; chromic oxychloride	154,9	3,3570
potassium dichromate	147,09	3,5353
nickel dichromate	137,35	3,7859
sodium dichromate	130,985	3,9699
ammonium dichromate	126,03	4,1260
chromium (VI) trioxide	99,99	5,2005
dichromium tris(chromate); chromium III chromate; chromic chromate	93,995	5,5322
Chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex	52	10,0000

		seuil
HP 13-B	M	converti
nickel chromate	174,7	2,9765
sodium chromate	161,97	3,2105
potassium dichromate	147,09	3,5353
nickel dichromate	137,35	3,7859
sodium dichromate	130,985	3,9699
ammonium dichromate	126,03	4,1260
chromium (VI) trioxide	99,99	5,2005

LISTE DES SUBSTANCES « PIRE CAS » POUR LE CUIVRE

Pour le cuivre :

		seuil
HP 4-B	М	converti
trisodium(2-(α-(3-(4-chloro-6-(2-(2-(vinylsulfonyl)ethoxy)ethylamino)-		
1,3,5-triazin-2-ylamino)-2-oxido-5- sulfonatophenylazo)benzylidenehydrazino)-4-		
sulfonatobenzoato)copper(II)	953,7	0,6664
copper(II) methanesulfonate	253,73	· · · · · · · · · · · · · · · · · · ·
	•	,
		seuil
HP 4-C	М	converti
copper sulphate	249,68	5,0905
HP 5-D	М	seuil converti
formic acid, copper nickel salt	302,33	
Torrific acid, copper flicker sait	302,33	0,2102
		seuil
HP 6-D	М	converti
Naphthenic acids, copper salts; copper naphthenate	405,9	3,9141
copper(II) methanesulfonate	253,73	6,2616
copper sulphate	249,68	6,3631
copper chloride; copper (I) chloride; cuprous chloride	99	16,0480
dicopper oxide; copper (I) oxide	71,545	22,2063
		,
110.7.4	, ,	seuil
HP 7-A trisodium [4'-(8-acetylamino-3,6-disulfonato-2-naphthylazo)-4"-(6-	М	converti
benzoylamino-3-sulfonato-2-naphthylazo)-biphenyl-1,3',3",1"'-		
tetraolato-O,O',O",O"]copper(II)	565,955	0,0112
formic acid, copper nickel salt	302,33	0,0210
110.40.4	, ,	seuil
HP 10-A	M	converti
formic acid, copper nickel salt	302,33	0,0631
		seuil
HP 11-B	М	converti
formic acid, copper nickel salt	302,33	
	,	
		seuil
HP 13-A	М	converti
(trisodium (2-((3-(6-(2-chloro-5-sulfonato)anilino)-4-(3-		
carboxypyridinio)-1,3,5-triazin-2-ylamino)-2-oxido-5-sulfonatophenylazo)phenylmethylazo)-4-sulfonatobenzoato)copper(3-))		
hydroxide	1068,75	0,5946

formic acid, copper nickel salt	302,33	2,1020
HP 13-B	M	seuil converti
formic acid, copper nickel salt	302,33	2,1020

LISTE DES SUBSTANCES « PIRE CAS » POUR LE MERCURE

		seuil
HP 4-C	M	converti
dimercury dichloride; mercurous chloride; calomel	236,045	16,9959

		seuil
HP 5-C	M	converti
dimercury dichloride; mercurous chloride; calomel	236,045	16,9959

		seuil
HP 5-D	M	converti
phenylmercury nitrate; [1] phenylmercury hydroxide; [2] basic phenylmercury nitrate [3]	339,7	0,5905
phenylmercury acetate	336,74	0,5957
phenylmercury nitrate; [1] phenylmercury hydroxide; [2] basic phenylmercury nitrate [3]	317,2	0,6324
2-methoxyethylmercury chloride	295,13	0,6797
phenylmercury nitrate; [1] phenylmercury hydroxide; [2] basic phenylmercury nitrate [3]	294,7	0,6807
mercury dichloride; mercuric chloride	271,5	0,7388
mercury	200,59	1,0000

		seuil
HP 5-E	M	converti
mercury difulminate; mercuric fulminate; fulminate of mercury	284,62	7,0476
mercury difulminate; mercuric fulminate; fulminate of mercury [> 20 %		
phlegmatiser]	284,62	7,0476
dimercury dicyanide oxide; mercuric oxycyanide	234,605	8,5501
inorganic compounds of mercury with the exception of mercuric		
sulphide and those specified elsewhere in this Annex	200,59	10,0000
organic compounds of mercury with the exception of those specified		
elsewhere in this Annex	200,59	10,0000
dimethylmercury; [1] diethylmercury [2]	200,59	10,0000
dimethylmercury; [1] diethylmercury [2]	200,59	10,0000

		seuil
HP 6-B	M	converti
mercury dichloride; mercuric chloride	271,5	0,1847
inorganic compounds of mercury with the exception of mercuric		
sulphide and those specified elsewhere in this Annex	200,59	0,2500
organic compounds of mercury with the exception of those specified		
elsewhere in this Annex	200,59	0,2500
dimethylmercury; [1] diethylmercury [2]	200,59	0,2500
dimethylmercury; [1] diethylmercury [2]	200,59	0,2500

		seuil
HP 6-C	M	converti
phenylmercury nitrate; [1] phenylmercury hydroxide; [2] basic		
phenylmercury nitrate [3]	339,7	2,9525
phenylmercury acetate	336,74	2,9784
phenylmercury nitrate; [1] phenylmercury hydroxide; [2] basic	317,2	3,1619

phenylmercury nitrate [3]		
2-methoxyethylmercury chloride	295,13	3,3983
phenylmercury nitrate; [1] phenylmercury hydroxide; [2] basic		
phenylmercury nitrate [3]	294,7	3,4033
mercury difulminate; mercuric fulminate; fulminate of mercury	284,62	3,5238
mercury difulminate; mercuric fulminate; fulminate of mercury [> 20 %		
phlegmatiser]	284,62	3,5238
dimercury dicyanide oxide; mercuric oxycyanide	234,605	4,2751

		seuil
HP 6-D	M	converti
dimercury dichloride; mercurous chloride; calomel	236,045	21,2449

		seuil
HP 6-E	M	converti
inorganic compounds of mercury with the exception of mercuric		
sulphide and those specified elsewhere in this Annex	200,59	0,2500
organic compounds of mercury with the exception of those specified		
elsewhere in this Annex	200,59	0,2500
dimethylmercury; [1] diethylmercury [2]	200,59	0,2500
dimethylmercury; [1] diethylmercury [2]	200,59	0,2500

		seuil
HP 6-G	M	converti
mercury difulminate; mercuric fulminate; fulminate of mercury	284,62	10,5715
mercury difulminate; mercuric fulminate; fulminate of mercury [> 20 %		
phlegmatiser]	284,62	10,5715
dimercury dicyanide oxide; mercuric oxycyanide	234,605	12,8252

		seuil
HP 6-J	М	converti
mercury	200,59	0,5000
inorganic compounds of mercury with the exception of mercuric		
sulphide and those specified elsewhere in this Annex	200,59	0,5000
organic compounds of mercury with the exception of those specified		
elsewhere in this Annex	200,59	0,5000
dimethylmercury; [1] diethylmercury [2]	200,59	0,5000
dimethylmercury; [1] diethylmercury [2]	200,59	0,5000

		seuil
HP 6-K	M	converti
mercury difulminate; mercuric fulminate; fulminate of mercury	284,62	2,4667
mercury difulminate; mercuric fulminate; fulminate of mercury [> 20 %		
phlegmatiser]	284,62	2,4667
dimercury dicyanide oxide; mercuric oxycyanide	234,605	2,9925

		seuil
HP 8-A	M	converti
phenylmercury nitrate; [1] phenylmercury hydroxide; [2] basic		
phenylmercury nitrate [3]	339,7	2,9525

phenylmercury acetate	336,74	2,9784
phenylmercury nitrate; [1] phenylmercury hydroxide; [2] basic		
phenylmercury nitrate [3]	317,2	3,1619
2-methoxyethylmercury chloride	295,13	3,3983
phenylmercury nitrate; [1] phenylmercury hydroxide; [2] basic		
phenylmercury nitrate [3]	294,7	3,4033
mercury dichloride; mercuric chloride	271,5	3,6941

		seuil
HP 10-A	М	converti
mercury	200,59	0,3000

		seuil
HP 10-B	M	converti
mercury dichloride; mercuric chloride	271,5	2,2165

		seuil
HP 11-B	M	converti
mercury dichloride; mercuric chloride	271,5	0,7388

ANNEXE 6

LISTE DES SUBSTANCES « PIRE CAS » POUR LE NICKEL

HP 4-A	М	seuil converti
nickel(II) octanoate	345,12	0,1701

		seuil
HP 4-B	M	converti
nickel dinitrate	182,72	3,2131
nitric acid, nickel salt	120,71	4,8637

		seuil
HP 5-D	М	converti
nickel triuranium decaoxide	932,79	0,0629
nickel barium titanium primrose priderite; C.I. Pigment Yellow 157; C.I.	707.04	0.0740
77900	787,34	0,0746
nickel(II) stearate; nickel(II) octadecanoate	625,66	0,0938
nickel(II) palmitate	569,53	0,1031
nickel 3,5-bis(tert-butyl)-4-hydroxybenzoate (1:2)	559,38	0,1050
bis(d-gluconato-O 1,O 2)nickel	449,01	0,1308
cobalt dimolybdenum nickel octaoxide	437,52	0,1342
nickel(II) neoundecanoate	429,26	0,1368
nickel(II) isodecanoate	401,21	0,1463
nickel(II) neodecanoate	401,21	0,1463
neodecanoic acid, nickel salt	401,21	0,1463
nickel bis(4-cyclohexylbutyrate)	397,17	0,1478
(isodecanoato-O)(isononanoato-O)nickel	387,2	0,1516
(isononanoato-O)(neodecanoato-O)nickel	387,2	0,1516
(isooctanoato-O)(neodecanoato-O)nickel	373,17	0,1573
(2-ethylhexanoato-O)(isodecanoato-O)nickel	373,17	0,1573
(2-ethylhexanoato-O)(neodecanoato-O)nickel	373,17	0,1573
(isodecanoato-O)(isooctanoato-O)nickel	373,17	0,1573
nickel bis(isononanoate)	373,15	0,1573
nickel(II) neononanoate	373,15	0,1573
nickel bis(benzenesulfonate)	373,03	0,1574
nickel diperchlorate; perchloric acid, nickel(II) salt	365,7	0,1605
(2-ethylhexanoato-O)(isononanoato-O)nickel	359,13	0,1635
(isononanoato-O)(isooctanoato-O)nickel	359,13	0,1635
nickel(II) octanoate	345,12	0,1701
nickel bis(2-ethylhexanoate)	345,1	0,1701
2-ethylhexanoic acid, nickel salt	345,1	0,1701
dimethylhexanoic acid nickel salt	345,1	0,1701
nickel(II) isooctanoate	345,1	0,1701
2,7-naphthalenedisulfonic acid, nickel(II) salt	344,98	0,1702
silicic acid, lead nickel salt	342,98	0,1712
nickel dipotassium bis(sulfate)	329,02	0,1784
molybdenum nickel hydroxide oxide phosphate	325,2867	0,1805
nickel dibromate	314,51	0,1867

nickel diiodide	312,52	0,1879
ethyl hydrogen sulfate, nickel(II) salt	310,96	0,1888
nickel selenate	309,76	0,1895
diammonium nickel hexacyanoferrate	306,74	0,1914
nickel tungsten tetraoxide	306,56	0,1915
formic acid, copper nickel salt	302,33	0,1942
nickel dibenzoate	300,94	0,1951
diammonium nickel bis(sulfate)	286,9	0,2046
nickel(II) trifluoroacetate	284,72	0,2062
nickel dichromate	274,7	0,2137
citric acid, ammonium nickel salt	265,83	0,2209
nickel divanadium hexaoxide	256,59	0,2288
nickel bis(dihydrogen phosphate)	252,68	0,2323
nickel tellurium tetraoxide	252,32	0,2327
nickel bis(sulfamidate); nickel sulfamate	250,87	0,2340
nickel(II) hydrogen citrate	247,79	0,2369
nickel dilactate	236,85	0,2479
diphosphoric acid, nickel(II) salt	236,68	0,2481
nickel tellurium trioxide	236,32	0,2484
nickel bis(tetrafluoroborate)	232,32	0,2527
nickel dichlorate	225,61	0,2602
nickel tin trioxide; nickel stannate	225,4	0,2605
molybdenum nickel tetraoxide	218,65	0,2685
nickel dibromide	218,52	0,2687
nickel diarsenide	208,55	0,2815
nickel(II) propionate	204,83	0,2866
nickel isooctanoate	202,92	0,2893
nickel hexafluorosilicate	200,79	0,2924
nickel zirkonium trioxide	197,93	0,2966
nickel silicate (3:4)	197,5067	0,2973
phosphoric acid, calcium nickel salt	196,79	0,2983
nickel bis(phosphinate)	188,69	0,3111
nickel telluride	186,31	0,3151
nickel(II) selenite	185,67	0,3162
citric acid, nickel salt	184,76	0,3178
nickel oxalate	182,76	0,3212
nickel dinitrate	182,72	0,3213
nickel di(acetate)	176,8	0,3321
dialuminium nickel tetraoxide	176,67	0,3323
nickel dithiocyanate	174,87	0,3357
nickel chromate	174,7	0,3361
molybdenum nickel oxide	170,65	0,3440
dinickel hexacyanoferrate	164,685	0,3565
nickel potassium fluoride	154,8	0,3793
nickel sulfate	154,77	0,3793

	454.00	0.0705
nickel hydrogen phosphate	154,69	0,3795
nickel titanium trioxide	154,61	0,3797
nickel titanium oxide	154,61	0,3797
trinickel bis(arsenate); nickel(II) arsenate	151,3233	0,3880
trinickel bis(arsenite)	151,3233	0,3880
cobalt nickel dioxide	149,64	0,3923
cobalt nickel oxide	149,64	0,3923
nickel diformate	148,75	0,3947
formic acid, nickel salt	148,75	0,3947
oxalic acid, nickel salt	146,73	0,4001
dinickel diphosphate	145,68	0,4030
nickel(II) sulfite	138,77	0,4231
nickel selenide	137,67	0,4265
nickel(II) silicate	134,79	0,4356
silicic acid, nickel salt	134,79	0,4356
nickel arsenide	133,63	0,4393
nickel dichloride	129,62	0,4529
trihydrogen hydroxybis[orthosilicato(4-)]trinickelate(3-)	126,7767	0,4631
nickel phosphinate	124,71	0,4708
trinickel bis(orthophosphate)	122,0233	0,4811
carbonic acid, nickel salt	120,74	0,4863
nitric acid, nickel salt	120,71	0,4864
nickel acetate	118,76	0,4944
nickel carbonate; basic nickel carbonate; carbonic acid, nickel (2+) salt	118,72	0,4945
nickel boron phosphide	116,49	0,5040
nickel disilicide	114,88	0,5111
nickel dicyanide	110,75	0,5301
[carbonato(2-)] tetrahydroxytrinickel	107,3933	0,5467
[μ-[carbonato(2-)-O:O']] dihydroxy trinickel	105,72	0,5553
dinickel orthosilicate	104,75	0,5605
olivine, nickel green	104,75	0,5605
trinickel tetrasulfide	101,4567	0,5787
lithium nickel dioxide	97,65	0,6012
nickel difluoride	96,71	0,6071
nickel hydroxide	92,72	0,6332
nickel (II) sulfide	90,77	0,6468
millerite	90,77	0,6468
nickel dioxide	90,71	0,6472
dinickel trioxide	82,71	0,7098
nickel sulfide	80,08333	0,7331
trinickel disulfide; nickel subsulfide	80,08333	0,7331
heazlewoodite	80,08333	0,7331
nickel dihydroxide	75,72	0,7754
nickel monoxide	74,71	0,7858
nickel oxide	74,71	0,7858
THONGI ONIUG	14,11	0,7000

bunsenite	74,71	0,7858
dinickel phosphide	74,195	0,7913
dinickel silicide	72,755	0,8070
nickel boride (NiB)	69,52	0,8445
dinickel boride	64,115	0,9157
nickel boride	64,115	0,9157
trinickel boride	62,31333	0,9422
nickel	58,71	1,0000
nickel powder; [particle diameter < 1 mm]	58,71	1,0000
nickel matte	58,71	1,0000

		seuil
HP 6-C	M	converti
nickel dichloride	129,62	2,2647

		seuil
HP 6-D	M	converti
nickel dipotassium bis(sulfate)	329,02	4,4610
diammonium nickel bis(sulfate)	286,9	5,1159
nickel dinitrate	182,72	8,0328
nickel di(acetate)	176,8	8,3018
nickel sulfate	154,77	9,4834
carbonic acid, nickel salt	120,74	12,1563
nitric acid, nickel salt	120,71	12,1593
nickel acetate	118,76	12,3590
nickel carbonate; basic nickel carbonate; carbonic acid, nickel (2+) salt	118,72	12,3631
[carbonato(2-)] tetrahydroxytrinickel	107,3933	13,6670
[µ-[carbonato(2-)-O:O']] dihydroxy trinickel	105,72	13,8834
nickel hydroxide	92,72	15,8299
nickel dihydroxide	75,72	19,3839

		seuil
HP 6-J	M	converti
tetracarbonylnickel; nickel tetracarbonyl	170,75	0,1719

		seuil
HP 6-K	M	converti
nickel dichloride	129,62	1,5853

		seuil
HP 6-L	M	converti
nickel dipotassium bis(sulfate)	329,02	4,0149
diammonium nickel bis(sulfate)	286,9	4,6043
nickel dinitrate	182,72	7,2295
nickel di(acetate)	176,8	7,4716
nickel sulfate	154,77	8,5351

carbonic acid, nickel salt	120,74	10,9407
nitric acid, nickel salt	120,71	10,9434
nickel acetate	118,76	11,1231
nickel carbonate; basic nickel carbonate; carbonic acid, nickel (2+) salt	118,72	11,1268
[carbonato(2-)] tetrahydroxytrinickel	107,3933	12,3003
[µ-[carbonato(2-)-O:O']] dihydroxy trinickel	105,72	12,4950
nickel hydroxide	92,72	14,2469
nickel dihydroxide	75,72	17,4455

HP 7-A	М	seuil converti
nickel triuranium decaoxide	932,79	0,0063
nickel barium titanium primrose priderite; C.I. Pigment Yellow 157; C.I.	002,10	3,3333
77900	787,34	0,0075
nickel(II) stearate; nickel(II) octadecanoate	625,66	0,0094
nickel(II) palmitate	569,53	0,0103
nickel 3,5-bis(tert-butyl)-4-hydroxybenzoate (1:2)	559,38	0,0105
bis(d-gluconato-O 1,O 2)nickel	449,01	0,0131
cobalt dimolybdenum nickel octaoxide	437,52	0,0134
nickel(II) neoundecanoate	429,26	0,0137
nickel(II) isodecanoate	401,21	0,0146
nickel(II) neodecanoate	401,21	0,0146
neodecanoic acid, nickel salt	401,21	0,0146
nickel bis(4-cyclohexylbutyrate)	397,17	0,0148
(isodecanoato-O)(isononanoato-O)nickel	387,2	0,0152
(isononanoato-O)(neodecanoato-O)nickel	387,2	0,0152
(isooctanoato-O)(neodecanoato-O)nickel	373,17	0,0157
(2-ethylhexanoato-O)(isodecanoato-O)nickel	373,17	0,0157
(2-ethylhexanoato-O)(neodecanoato-O)nickel	373,17	0,0157
(isodecanoato-O)(isooctanoato-O)nickel	373,17	0,0157
nickel bis(isononanoate)	373,15	0,0157
nickel(II) neononanoate	373,15	0,0157
nickel bis(benzenesulfonate)	373,03	0,0157
nickel diperchlorate; perchloric acid, nickel(II) salt	365,7	0,0161
(2-ethylhexanoato-O)(isononanoato-O)nickel	359,13	0,0163
(isononanoato-O)(isooctanoato-O)nickel	359,13	0,0163
nickel(II) octanoate	345,12	0,0170
nickel bis(2-ethylhexanoate)	345,1	0,0170
2-ethylhexanoic acid, nickel salt	345,1	0,0170
dimethylhexanoic acid nickel salt	345,1	0,0170
nickel(II) isooctanoate	345,1	0,0170
2,7-naphthalenedisulfonic acid, nickel(II) salt	344,98	0,0170
silicic acid, lead nickel salt	342,98	0,0171
nickel dipotassium bis(sulfate)	329,02	0,0178
molybdenum nickel hydroxide oxide phosphate	325,2867	0,0180

niekal dibramata	24.4.54	0.0407
nickel dibromate	314,51	0,0187
nickel diiodide	312,52	0,0188
ethyl hydrogen sulfate, nickel(II) salt	310,96	0,0189
nickel selenate	309,76	0,0190
diammonium nickel hexacyanoferrate	306,74	0,0191
nickel tungsten tetraoxide	306,56	0,0192
formic acid, copper nickel salt	302,33	0,0194
nickel dibenzoate	300,94	0,0195
diammonium nickel bis(sulfate)	286,9	0,0205
nickel(II) trifluoroacetate	284,72	0,0206
nickel dichromate	274,7	0,0214
citric acid, ammonium nickel salt	265,83	0,0221
nickel divanadium hexaoxide	256,59	0,0229
nickel bis(dihydrogen phosphate)	252,68	0,0232
nickel tellurium tetraoxide	252,32	0,0233
nickel bis(sulfamidate); nickel sulfamate	250,87	0,0234
nickel(II) hydrogen citrate	247,79	0,0237
nickel dilactate	236,85	0,0248
diphosphoric acid, nickel(II) salt	236,68	0,0248
nickel tellurium trioxide	236,32	0,0248
nickel bis(tetrafluoroborate)	232,32	0,0253
nickel dichlorate	225,61	0,0260
nickel tin trioxide; nickel stannate	225,4	0,0260
molybdenum nickel tetraoxide	218,65	0,0269
nickel dibromide	218,52	0,0269
nickel diarsenide	208,55	0,0282
nickel(II) propionate	204,83	0,0287
nickel isooctanoate	202,92	0,0289
nickel hexafluorosilicate	200,79	0,0292
nickel zirkonium trioxide	197,93	0,0297
nickel silicate (3:4)	197,5067	0,0297
phosphoric acid, calcium nickel salt	196,79	0,0298
nickel bis(phosphinate)	188,69	0,0311
nickel telluride	186,31	0,0315
nickel(II) selenite	185,67	0,0316
citric acid, nickel salt	184,76	0,0318
nickel oxalate	182,76	0,0321
nickel dinitrate	182,72	0,0321
nickel di(acetate)	176,8	0,0332
dialuminium nickel tetraoxide	176,67	0,0332
nickel dithiocyanate	174,87	0,0336
nickel chromate	174,7	0,0336
molybdenum nickel oxide	170,65	0,0344
dinickel hexacyanoferrate	164,685	0,0356
nickel potassium fluoride	154,8	0,0379
Hilokei polassium nuonue	104,0	0,0379

nickel sulfate	154,77	0,0379
nickel hydrogen phosphate	154,69	0,0380
nickel titanium trioxide	154,61	0,0380
nickel titanium oxide	154,61	0,0380
trinickel bis(arsenate); nickel(II) arsenate	151,3233	0,0388
trinickel bis(arsenite)	151,3233	0,0388
cobalt nickel dioxide	149,64	0,0392
cobalt nickel oxide	149,64	0,0392
nickel diformate	148,75	0,0395
formic acid, nickel salt	148,75	0,0395
oxalic acid, nickel salt	146,73	0,0400
dinickel diphosphate	145,68	0,0403
nickel(II) sulfite	138,77	0,0423
nickel selenide	137,67	0,0426
nickel(II) silicate	134,79	0,0436
silicic acid, nickel salt	134,79	0,0436
nickel arsenide	133,63	0,0439
nickel dichloride	129,62	0,0453
trihydrogen hydroxybis[orthosilicato(4-)]trinickelate(3-)	126,7767	0,0463
nickel phosphinate	124,71	0,0471
trinickel bis(orthophosphate)	122,0233	0,0481
carbonic acid, nickel salt	120,74	0,0486
nitric acid, nickel salt	120,71	0,0486
nickel acetate	118,76	0,0494
nickel carbonate; basic nickel carbonate; carbonic acid, nickel (2+) salt	118,72	0,0495
nickel boron phosphide	116,49	0,0504
nickel disilicide	114,88	0,0511
nickel dicyanide	110,75	0,0530
[carbonato(2-)] tetrahydroxytrinickel	107,3933	0,0547
[μ-[carbonato(2-)-O:O']] dihydroxy trinickel	105,72	0,0555
dinickel orthosilicate	104,75	0,0560
olivine, nickel green	104,75	0,0560
trinickel tetrasulfide	101,4567	0,0579
lithium nickel dioxide	97,65	0,0601
nickel difluoride	96,71	0,0607
nickel hydroxide	92,72	0,0633
nickel (II) sulfide	90,77	0,0647
millerite	90,77	0,0647
nickel dioxide	90,71	0,0647
dinickel trioxide	82,71	0,0710
nickel sulfide	80,08333	0,0713
trinickel disulfide; nickel subsulfide	80,08333	0,0733
heazlewoodite	80,08333	0,0733
nickel dihydroxide	75,72	0,0735
nickel monoxide	74,71	0,0775
HIUNUI HIUHUAIUG	14,11	0,0700

nickel oxide	74,71	0,0786
bunsenite	74,71	0,0786
dinickel phosphide	74,195	0,0791
dinickel silicide	72,755	0,0807
nickel boride (NiB)	69,52	0,0845
dinickel boride	64,115	0,0916
nickel boride	64,115	0,0916
trinickel boride	62,31333	0,0942
nickel matte	58,71	0,1000

		seuil
HP 7-B	M	converti
tetracarbonylnickel; nickel tetracarbonyl	170,75	0,3438
nickel	58,71	1,0000
nickel powder; [particle diameter < 1 mm]	58,71	1,0000

	1	seuil
HP 8-A	M	converti
nickel diperchlorate; perchloric acid, nickel(II) salt	365,7	0,8027
nickel(II) octanoate	345,12	0,8506

		seuil
HP 10-A	M	converti
nickel(II) stearate; nickel(II) octadecanoate	625,66	0,0282
nickel(II) palmitate	569,53	0,0309
nickel 3,5-bis(tert-butyl)-4-hydroxybenzoate (1:2)	559,38	0,0315
bis(d-gluconato-O 1,O 2)nickel	449,01	0,0392
nickel(II) neoundecanoate	429,26	0,0410
nickel(II) isodecanoate	401,21	0,0439
nickel(II) neodecanoate	401,21	0,0439
neodecanoic acid, nickel salt	401,21	0,0439
nickel bis(4-cyclohexylbutyrate)	397,17	0,0443
(isodecanoato-O)(isononanoato-O)nickel	387,2	0,0455
(isononanoato-O)(neodecanoato-O)nickel	387,2	0,0455
(isooctanoato-O)(neodecanoato-O)nickel	373,17	0,0472
(2-ethylhexanoato-O)(isodecanoato-O)nickel	373,17	0,0472
(2-ethylhexanoato-O)(neodecanoato-O)nickel	373,17	0,0472
(isodecanoato-O)(isooctanoato-O)nickel	373,17	0,0472
nickel bis(isononanoate)	373,15	0,0472
nickel(II) neononanoate	373,15	0,0472
nickel bis(benzenesulfonate)	373,03	0,0472
nickel diperchlorate; perchloric acid, nickel(II) salt	365,7	0,0482
(2-ethylhexanoato-O)(isononanoato-O)nickel	359,13	0,0490
(isononanoato-O)(isooctanoato-O)nickel	359,13	0,0490
nickel(II) octanoate	345,12	0,0510
nickel bis(2-ethylhexanoate)	345,1	0,0510

2-ethylhexanoic acid, nickel salt	345,1	0,0510
dimethylhexanoic acid nickel salt	345,1	0,0510
nickel(II) isooctanoate	345,1	0,0510
2,7-naphthalenedisulfonic acid, nickel(II) salt	344,98	0,0511
silicic acid, lead nickel salt	342,98	0,0514
nickel dipotassium bis(sulfate)	329,02	0,0535
nickel dibromate	314,51	0,0560
nickel diiodide	312,52	0,0564
ethyl hydrogen sulfate, nickel(II) salt	310,96	0,0566
nickel selenate	309,76	0,0569
formic acid, copper nickel salt	302,33	0,0583
nickel dibenzoate	300,94	0,0585
diammonium nickel bis(sulfate)	286,9	0,0614
nickel(II) trifluoroacetate	284,72	0,0619
nickel dichromate	274,7	0,0641
citric acid, ammonium nickel salt	265,83	0,0663
nickel bis(sulfamidate); nickel sulfamate	250,87	0,0702
nickel(II) hydrogen citrate	247,79	0,0711
nickel dilactate	236,85	0,0744
nickel bis(tetrafluoroborate)	232,32	0,0758
nickel dichlorate	225,61	0,0781
nickel dibromide	218,52	0,0806
nickel(II) propionate	204,83	0,0860
nickel isooctanoate	202,92	0,0868
nickel hexafluorosilicate	200,79	0,0877
citric acid, nickel salt	184,76	0,0953
nickel dinitrate	182,72	0,0964
nickel di(acetate)	176,8	0,0996
nickel dithiocyanate	174,87	0,1007
tetracarbonylnickel; nickel tetracarbonyl	170,75	0,1032
nickel potassium fluoride	154,8	0,1138
nickel sulfate	154,77	0,1138
nickel diformate	148,75	0,1184
formic acid, nickel salt	148,75	0,1184
nickel dichloride	129,62	0,1359
carbonic acid, nickel salt	120,74	0,1459
nitric acid, nickel salt	120,71	0,1459
nickel acetate	118,76	0,1483
nickel carbonate; basic nickel carbonate; carbonic acid, nickel (2+) salt	118,72	0,1484
[carbonato(2-)] tetrahydroxytrinickel	107,3933	0,1640
[μ-[carbonato(2-)-O:O']] dihydroxy trinickel	105,72	0,1666
nickel difluoride	96,71	0,1821
nickel hydroxide	92,72	0,1900
nickel dihydroxide	75,72	0,2326

HP 11-B	M	seuil
		converti
nickel(II) stearate; nickel(II) octadecanoate nickel(II) palmitate	625,66 569,53	0,0938 0,1031
nickel 3,5-bis(tert-butyl)-4-hydroxybenzoate (1:2)	559,38	0,1051
bis(d-gluconato-O 1,O 2)nickel	449,01	
nickel(II) neoundecanoate	429,26	0,1308 0,1368
nickel(II) isodecanoate	401,21	0,1368
nickel(II) neodecanoate	401,21	0,1463
neodecanoic acid, nickel salt	401,21	0,1463
nickel bis(4-cyclohexylbutyrate) (isodecanoato-O)(isononanoato-O)nickel	397,17 387,2	0,1478
(isononanoato-O)(isononanoato-O)nickel		0,1516
	387,2	0,1516
(isooctanoato-O)(neodecanoato-O)nickel	373,17	0,1573
(2-ethylhexanoato-O)(isodecanoato-O)nickel	373,17	0,1573
(2-ethylhexanoato-O)(neodecanoato-O)nickel	373,17	0,1573
(isodecanoato-O)(isooctanoato-O)nickel	373,17	0,1573
nickel bis(isononanoate)	373,15	0,1573
nickel(II) neononanoate	373,15	0,1573
nickel bis(benzenesulfonate)	373,03	0,1574
nickel diperchlorate; perchloric acid, nickel(II) salt	365,7	0,1605
(2-ethylhexanoato-O)(isononanoato-O)nickel	359,13	0,1635
(isononanoato-O)(isooctanoato-O)nickel	359,13	0,1635
nickel(II) octanoate	345,12	0,1701
nickel bis(2-ethylhexanoate)	345,1	0,1701
2-ethylhexanoic acid, nickel salt	345,1	0,1701
dimethylhexanoic acid nickel salt	345,1	0,1701
nickel(II) isooctanoate	345,1	0,1701
2,7-naphthalenedisulfonic acid, nickel(II) salt	344,98	0,1702
nickel dipotassium bis(sulfate)	329,02	0,1784
nickel dibromate	314,51	0,1867
nickel diiodide	312,52	0,1879
ethyl hydrogen sulfate, nickel(II) salt	310,96	0,1888
nickel selenate	309,76	0,1895
formic acid, copper nickel salt	302,33	0,1942
nickel dibenzoate	300,94	0,1951
diammonium nickel bis(sulfate)	286,9	0,2046
nickel(II) trifluoroacetate	284,72	0,2062
nickel dichromate	274,7	0,2137
citric acid, ammonium nickel salt	265,83	0,2209
nickel bis(sulfamidate); nickel sulfamate	250,87	0,2340
nickel(II) hydrogen citrate	247,79	0,2369
nickel dilactate	236,85	0,2479
nickel bis(tetrafluoroborate)	232,32	0,2527
nickel dichlorate	225,61	0,2602

218,52	0,2687
204,83	0,2866
202,92	0,2893
200,79	0,2924
184,76	0,3178
182,72	0,3213
176,8	0,3321
174,87	0,3357
154,8	0,3793
154,77	0,3793
148,75	0,3947
148,75	0,3947
129,62	0,4529
120,74	0,4863
120,71	0,4864
118,76	0,4944
118,72	0,4945
107,3933	0,5467
105,72	0,5553
96,71	0,6071
92,72	0,6332
90,77	0,6468
90,77	0,6468
80,08333	0,7331
80,08333	0,7331
80,08333	0,7331
75,72	0,7754
	204,83 202,92 200,79 184,76 182,72 176,8 174,87 154,8 154,77 148,75 129,62 120,74 120,71 118,76 118,72 107,3933 105,72 96,71 92,72 90,77 90,77 80,08333 80,08333

		seuil
HP 13-A	M	converti
tetrasodium (c-(3-(1-(3-(e-6-dichloro-5-cyanopyrimidin-f-		
yl(methyl)amino)propyl)-1,6-dihydro-2-hydroxy-4-methyl-6-oxo-3-		
pyridylazo)-4-sulfonatophenylsulfamoyl)phthalocyanine-a,b,d-		
trisulfonato(6-))nickelato II, where a is 1 or 2 or 3 or 4,b is 8 or 9 or 10 or 11,c is 15 or 16 or 17 or 18, d is 22 or 23 or 24 or 25 and where e		
and f together are 2 and 4 or 4 and 2 respectively	1528,79	0,3840
nickel triuranium decaoxide	932,79	0,6294
nickel barium titanium primrose priderite; C.I. Pigment Yellow 157; C.I.		
77900	787,34	0,7457
nickel(II) stearate; nickel(II) octadecanoate	625,66	0,9384
nickel(II) palmitate	569,53	1,0308
nickel 3,5-bis(tert-butyl)-4-hydroxybenzoate (1:2)	559,38	1,0496
bis(d-gluconato-O 1,O 2)nickel	449,01	1,3075
cobalt dimolybdenum nickel octaoxide	437,52	1,3419
nickel(II) neoundecanoate	429,26	1,3677
nickel(II) isodecanoate	401,21	1,4633

nickel(II) neodecanoate	401,21	1,4633
neodecanoic acid, nickel salt	401,21	1,4633
nickel bis(4-cyclohexylbutyrate)	397,17	1,4782
(isodecanoato-O)(isononanoato-O)nickel	387,2	1,5163
(isononanoato-O)(neodecanoato-O)nickel	387,2	1,5163
(isooctanoato-O)(neodecanoato-O)nickel	373,17	1,5733
(2-ethylhexanoato-O)(isodecanoato-O)nickel	373,17	1,5733
(2-ethylhexanoato-O)(neodecanoato-O)nickel	373,17	1,5733
(isodecanoato-O)(isooctanoato-O)nickel	373,17	1,5733
nickel bis(isononanoate)	373,15	1,5734
nickel(II) neononanoate	373,15	1,5734
nickel bis(benzenesulfonate)	373,03	1,5739
nickel diperchlorate; perchloric acid, nickel(II) salt	365,7	1,6054
(2-ethylhexanoato-O)(isononanoato-O)nickel	359,13	1,6348
(isononanoato-O)(isooctanoato-O)nickel	359,13	1,6348
nickel(II) octanoate	345,12	1,7011
nickel bis(2-ethylhexanoate)	345,1	1,7012
2-ethylhexanoic acid, nickel salt	345,1	1,7012
dimethylhexanoic acid nickel salt	345,1	1,7012
nickel(II) isooctanoate	345,1	1,7012
2,7-naphthalenedisulfonic acid, nickel(II) salt	344,98	1,7018
silicic acid, lead nickel salt	342,98	1,7118
nickel dipotassium bis(sulfate)	329,02	1,7844
molybdenum nickel hydroxide oxide phosphate	325,2867	1,8049
nickel dibromate	314,51	1,8667
nickel diiodide	312,52	1,8786
ethyl hydrogen sulfate, nickel(II) salt	310,96	1,8880
nickel selenate	309,76	1,8953
diammonium nickel hexacyanoferrate	306,74	1,9140
nickel tungsten tetraoxide	306,56	1,9151
formic acid, copper nickel salt	302,33	1,9419
nickel dibenzoate	300,94	1,9509
diammonium nickel bis(sulfate)	286,9	2,0464
nickel(II) trifluoroacetate	284,72	2,0620
nickel dichromate	274,7	2,1372
citric acid, ammonium nickel salt	265,83	2,2086
nickel divanadium hexaoxide	256,59	2,2881
nickel bis(dihydrogen phosphate)	252,68	2,3235
nickel tellurium tetraoxide	252,32	2,3268
nickel bis(sulfamidate); nickel sulfamate	250,87	2,3403
nickel(II) hydrogen citrate	247,79	2,3693
nickel dilactate	236,85	2,4788
diphosphoric acid, nickel(II) salt	236,68	2,4806
nickel tellurium trioxide	236,32	2,4843
nickel bis(tetrafluoroborate)	232,32	2,4643
וויטאטו טוא(ופוומוועטוטטטומנ <i>פ</i>)	232,32	۷,۵۷۱

nickel dichlorate	225,61	2,6023
nickel tin trioxide; nickel stannate	225,4	2,6047
molybdenum nickel tetraoxide	218,65	2,6851
nickel dibromide	218,52	2,6867
nickel diarsenide	208,55	2,8152
nickel(II) propionate	204,83	2,8663
nickel isooctanoate	202,92	2,8933
nickel hexafluorosilicate	200,79	2,9240
nickel zirkonium trioxide	197,93	2,9662
nickel silicate (3:4)	197,5067	2,9726
phosphoric acid, calcium nickel salt	196,79	2,9834
nickel bis(phosphinate)	188,69	3,1115
nickel telluride	186,31	3,1512
nickel(II) selenite	185,67	3,1621
citric acid, nickel salt	184,76	3,1776
nickel oxalate	182,76	3,2124
nickel dinitrate	182,72	3,2131
nickel di(acetate)	176,8	3,3207
dialuminium nickel tetraoxide	176,67	3,3231
nickel dithiocyanate	174,87	3,3574
nickel chromate	174,7	3,3606
molybdenum nickel oxide	170,65	3,4404
dinickel hexacyanoferrate	164,685	3,5650
nickel potassium fluoride	154,8	3,7926
nickel sulfate	154,77	3,7934
nickel hydrogen phosphate	154,69	3,7953
nickel titanium trioxide	154,61	3,7973
nickel titanium oxide	154,61	3,7973
trinickel bis(arsenate); nickel(II) arsenate	151,3233	3,8798
trinickel bis(arsenite)	151,3233	3,8798
cobalt nickel dioxide	149,64	3,9234
cobalt nickel oxide	149,64	3,9234
nickel diformate	148,75	3,9469
formic acid, nickel salt	148,75	3,9469
oxalic acid, nickel salt	146,73	4,0012
dinickel diphosphate	145,68	4,0301
nickel(II) sulfite	138,77	4,2307
nickel selenide	137,67	4,2645
nickel(II) silicate	134,79	4,3557
silicic acid, nickel salt	134,79	4,3557
nickel arsenide	133,63	4,3935
nickel dichloride	129,62	4,5294
trihydrogen hydroxybis[orthosilicato(4-)]trinickelate(3-)	126,7767	4,6310
nickel phosphinate	124,71	4,7077
trinickel bis(orthophosphate)	122,0233	4,8114
	122,0233	7,0114

carbonic acid, nickel salt	120,74	4,8625
nitric acid, nickel salt	120,71	4,8637
nickel acetate	118,76	4,9436
nickel carbonate; basic nickel carbonate; carbonic acid, nickel (2+) salt	118,72	4,9452
nickel boron phosphide	116,49	5,0399
nickel disilicide	114,88	5,1106
nickel dicyanide	110,75	5,3011
[carbonato(2-)] tetrahydroxytrinickel	107,3933	5,4668
[μ-[carbonato(2-)-O:O']] dihydroxy trinickel	105,72	5,5533
dinickel orthosilicate	104,75	5,6048
olivine, nickel green	104,75	5,6048
trinickel tetrasulfide	101,4567	5,7867
lithium nickel dioxide	97,65	6,0123
nickel difluoride	96,71	6,0707
nickel hydroxide	92,72	6,3320
nickel (II) sulfide	90,77	6,4680
millerite	90,77	6,4680
nickel dioxide	90,71	6,4723
dinickel trioxide	82,71	7,0983
nickel sulfide	80,08333	7,3311
trinickel disulfide; nickel subsulfide	80,08333	7,3311
heazlewoodite	80,08333	7,3311
nickel dihydroxide	75,72	7,7536
nickel monoxide	74,71	7,8584
nickel oxide	74,71	7,8584
bunsenite	74,71	7,8584
dinickel phosphide	74,195	7,9129
dinickel silicide	72,755	8,0695
nickel boride (NiB)	69,52	8,4451
dinickel boride	64,115	9,1570
nickel boride	64,115	9,1570
trinickel boride	62,31333	9,4217
nickel	58,71	10,0000
nickel powder; [particle diameter < 1 mm]	58,71	10,0000
nickel matte	58,71	10,0000

		seuil
HP 13-B	М	converti
nickel(II) stearate; nickel(II) octadecanoate	625,66	0,9384
nickel(II) palmitate	569,53	1,0308
nickel 3,5-bis(tert-butyl)-4-hydroxybenzoate (1:2)	559,38	1,0496
bis(d-gluconato-O 1,O 2)nickel	449,01	1,3075
nickel(II) neoundecanoate	429,26	1,3677
nickel(II) isodecanoate	401,21	1,4633
nickel(II) neodecanoate	401,21	1,4633

	10101	
neodecanoic acid, nickel salt	401,21	1,4633
nickel bis(4-cyclohexylbutyrate)	397,17	1,4782
(isodecanoato-O)(isononanoato-O)nickel	387,2	1,5163
(isononanoato-O)(neodecanoato-O)nickel	387,2	1,5163
(isooctanoato-O)(neodecanoato-O)nickel	373,17	1,5733
(2-ethylhexanoato-O)(isodecanoato-O)nickel	373,17	1,5733
(2-ethylhexanoato-O)(neodecanoato-O)nickel	373,17	1,5733
(isodecanoato-O)(isooctanoato-O)nickel	373,17	1,5733
nickel bis(isononanoate)	373,15	1,5734
nickel(II) neononanoate	373,15	1,5734
nickel bis(benzenesulfonate)	373,03	1,5739
nickel diperchlorate; perchloric acid, nickel(II) salt	365,7	1,6054
(2-ethylhexanoato-O)(isononanoato-O)nickel	359,13	1,6348
(isononanoato-O)(isooctanoato-O)nickel	359,13	1,6348
nickel(II) octanoate	345,12	1,7011
nickel bis(2-ethylhexanoate)	345,1	1,7012
2-ethylhexanoic acid, nickel salt	345,1	1,7012
dimethylhexanoic acid nickel salt	345,1	1,7012
nickel(II) isooctanoate	345,1	1,7012
2,7-naphthalenedisulfonic acid, nickel(II) salt	344,98	1,7018
nickel dipotassium bis(sulfate)	329,02	1,7844
molybdenum nickel hydroxide oxide phosphate	325,2867	1,8049
nickel dibromate	314,51	1,8667
nickel diiodide	312,52	1,8786
ethyl hydrogen sulfate, nickel(II) salt	310,96	1,8880
nickel selenate	309,76	1,8953
diammonium nickel hexacyanoferrate	306,74	1,9140
formic acid, copper nickel salt	302,33	1,9419
nickel dibenzoate	300,94	1,9509
diammonium nickel bis(sulfate)	286,9	2,0464
nickel(II) trifluoroacetate	284,72	2,0620
nickel dichromate	274,7	2,1372
citric acid, ammonium nickel salt	265,83	2,2086
nickel bis(dihydrogen phosphate)	252,68	2,3235
nickel tellurium tetraoxide	252,32	2,3268
nickel bis(sulfamidate); nickel sulfamate	250,87	2,3403
nickel(II) hydrogen citrate	247,79	2,3693
nickel dilactate	236,85	2,4788
diphosphoric acid, nickel(II) salt	236,68	2,4806
nickel tellurium trioxide	236,32	2,4843
nickel bis(tetrafluoroborate)	232,32	2,4643
nickel dichlorate	225,61	2,6023
nickel dibromide	218,52	2,6867
nickel(II) propionate	204,83	2,8663
nickel isooctanoate	202,92	2,8933

nickel hexafluorosilicate phosphoric acid, calcium nickel salt	200,79 196,79 188,69 185,67	2,9240 2,9834 3,1115
	188,69	•
sisted his (sheep his sta)		3 1115
nickel bis(phosphinate)	185 67	0,1110
nickel(II) selenite	100,07	3,1621
citric acid, nickel salt	184,76	3,1776
nickel dinitrate	182,72	3,2131
nickel di(acetate)	176,8	3,3207
nickel dithiocyanate	174,87	3,3574
nickel chromate	174,7	3,3606
nickel potassium fluoride	154,8	3,7926
nickel sulfate	154,77	3,7934
nickel hydrogen phosphate	154,69	3,7953
nickel diformate	148,75	3,9469
formic acid, nickel salt	148,75	3,9469
dinickel diphosphate	145,68	4,0301
nickel(II) sulfite	138,77	4,2307
nickel dichloride	129,62	4,5294
nickel phosphinate	124,71	4,7077
trinickel bis(orthophosphate)	122,0233	4,8114
carbonic acid, nickel salt	120,74	4,8625
nitric acid, nickel salt	120,71	4,8637
nickel acetate	118,76	4,9436
nickel carbonate; basic nickel carbonate; carbonic acid, nickel (2+) sa	lt 118,72	4,9452
nickel dicyanide	110,75	5,3011
[carbonato(2-)] tetrahydroxytrinickel	107,3933	5,4668
[μ-[carbonato(2-)-O:O']] dihydroxy trinickel	105,72	5,5533
nickel difluoride	96,71	6,0707
nickel hydroxide	92,72	6,3320
nickel dihydroxide	75,72	7,7536

ANNEXE 7

LISTE DES SUBSTANCES « PIRE CAS » POUR LE PLOMB

		seuil	
HP 4-B	M	converti	
lead(II) methanesulphonate	207,2		10

		seuil
HP 5-D	М	converti
silicic acid, lead nickel salt	342,98	0,6041

		seuil
HP 5-E	М	converti
lead hexafluorosilicate	207,2	10
lead compounds with the exception of those specified elsewhere in		
this Annex	207,2	10
lead diazide; lead azide	207,2	10
lead diazide; lead azide [> 20 % phlegmatiser]	207,2	10
lead chromate	207,2	10
trilead bis(orthophosphate)	207,2	10
lead sulfochromate yellow; C.I. Pigment Yellow 34; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77603.]	207,2	10
lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77605.]	207,2	10
lead hydrogen arsenate	207,2	10
lead di(acetate)	207,2	10
lead acetate, basic	207,2	10
lead(II) methanesulphonate	207,2	10
lead 2,4,6-trinitro-m-phenylene dioxide; lead 2,4,6-trinitroresorcinoxide; lead styphnate	207,2	10
lead 2,4,6-trinitro-m-phenylene dioxide; lead 2,4,6-trinitroresorcinoxide; lead styphnate (≥ 20 % phlegmatiser)	207,2	10

HP 6-C	M	seuil converti	
lead hydrogen arsenate	207,2		5

		seuil	
HP 6-D	М	converti	
lead hexafluorosilicate	207,2		25
lead compounds with the exception of those specified elsewhere in			
this Annex	207,2		25
lead diazide; lead azide	207,2		25
lead diazide; lead azide [> 20 % phlegmatiser]	207,2		25
lead(II) methanesulphonate	207,2		25
lead 2,4,6-trinitro-m-phenylene dioxide; lead 2,4,6-trinitroresorcinoxide;			
lead styphnate	207,2		25
lead 2,4,6-trinitro-m-phenylene dioxide; lead 2,4,6-trinitroresorcinoxide;			
lead styphnate (≥ 20 % phlegmatiser)	207,2		25

		seuil	
HP 6-K	M	converti	
lead hydrogen arsenate	207,2		3,5

		seuil
HP 6-L	M	converti
lead hexafluorosilicate	207,2	22,5
lead compounds with the exception of those specified elsewhere in		
this Annex	207,2	22,5
lead diazide; lead azide	207,2	22,5
lead diazide; lead azide [> 20 % phlegmatiser]	207,2	22,5
lead(II) methanesulphonate	207,2	22,5
lead 2,4,6-trinitro-m-phenylene dioxide; lead 2,4,6-trinitroresorcinoxide;		
lead styphnate	207,2	22,5
lead 2,4,6-trinitro-m-phenylene dioxide; lead 2,4,6-trinitroresorcinoxide;		
lead styphnate (≥ 20 % phlegmatiser)	207,2	22,5

		seuil
HP 7-A	M	converti
silicic acid, lead nickel salt	342,98	0,0604
lead chromate	207,2	0,1
lead sulfochromate yellow; C.I. Pigment Yellow 34; [This substance is		
identified in the Colour Index by Colour Index Constitution Number, C.I.		
77603.]	207,2	0,1
lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This		
substance is identified in the Colour Index by Colour Index Constitution		
Number, C.I. 77605.]	207,2	0,1
lead hydrogen arsenate	207,2	0,1

		seuil	
HP 7-B	M	converti	
lead acetate, basic	207,2		1

HP 10-A	M	seuil converti
silicic acid, lead nickel salt	342,98	0,1812
lead hexafluorosilicate	207,2	0,3
lead compounds with the exception of those specified elsewhere in this Annex	207,2	0,3
lead diazide; lead azide	207,2	0,3
lead diazide; lead azide [> 20 % phlegmatiser]	207,2	0,3
lead chromate	207,2	0,3
trilead bis(orthophosphate)	207,2	0,3
lead sulfochromate yellow; C.I. Pigment Yellow 34; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77603.]	207,2	0,3
lead chromate molybdate sulfate red; C.I. Pigment Red 104; [This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77605.]	207,2	0,3
lead hydrogen arsenate	207,2	0,3

lead di(acetate)	207,2	0,3
lead acetate, basic	207,2	0,3
lead(II) methanesulphonate	207,2	0,3
lead 2,4,6-trinitro-m-phenylene dioxide; lead 2,4,6-trinitroresorcinoxide;		
lead styphnate	207,2	0,3
lead 2,4,6-trinitro-m-phenylene dioxide; lead 2,4,6-trinitroresorcinoxide;		
lead styphnate (≥ 20 % phlegmatiser)	207,2	0,3

		seuil
HP 13-A	M	converti
silicic acid, lead nickel salt	342,98	6,0412

ANNEXE 8

LISTE DES SUBSTANCES « PIRE CAS » POUR LE ZINC

		seuil
HP 4-B	M	converti
ziram (ISO); zinc bis dimethyldithiocarbamate	305,82	2,1379
zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc		
sulphate (anhydrous) [2]	179,45	3,6434
zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc	404.44	4.0.400
sulphate (anhydrous) [2]	161,44	4,0498
		a a u ii
HP 4-C	M	seuil converti
zinc bis(dibutyldithiocarbamate)	474,14	2,7578
zinc bis(diethyldithiocarbamate)	361,93	3,6129
zinc bis(dietriyiditiilocarbamate)	301,33	3,0129
		seuil
HP 5-C	M	converti
zinc bis(dibutyldithiocarbamate)	474,14	2,7578
zinc bis(diethyldithiocarbamate)	361,93	3,6129
ziram (ISO); zinc bis dimethyldithiocarbamate	305,82	4,2757
zineb (ISO); zinc ethylenebis(dithiocarbamate) (polymeric)	275,75	4,7420
Zines (1867), Zine ettryleriesis(ditillocalisatifiate) (polymeno)	210,10	7,7 720
		seuil
HP 5-E	M	converti
ziram (ISO); zinc bis dimethyldithiocarbamate	305,82	2,1379
propineb (ISO); polymeric zinc propylenebis(dithiocarbamate)	289,8	2,2560
	•	,
		seuil
HP 6-B	M	converti
trining diphopphido, ning rhannhida		
trizinc diphosphide; zinc phosphide	86,03	0,1900
trizine dipnospniae; zine pnospniae	86,03	0,1900
		seuil
HP 6-D	M	seuil converti
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc	M 564,04	seuil converti 2,8978
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate)	M 564,04 361,93	seuil converti 2,8978 4,5161
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate	M 564,04 361,93 305,82	seuil converti 2,8978 4,5161 5,3446
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate zinc chromates including zinc potassium chromate	M 564,04 361,93	seuil converti 2,8978 4,5161
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate zinc chromates including zinc potassium chromate zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc	M 564,04 361,93 305,82 181,4	seuil converti 2,8978 4,5161 5,3446 9,0105
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate zinc chromates including zinc potassium chromate zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2]	M 564,04 361,93 305,82	seuil converti 2,8978 4,5161 5,3446
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate zinc chromates including zinc potassium chromate zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc	M 564,04 361,93 305,82 181,4 179,45	seuil converti 2,8978 4,5161 5,3446 9,0105
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate zinc chromates including zinc potassium chromate zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2]	M 564,04 361,93 305,82 181,4 179,45	seuil converti 2,8978 4,5161 5,3446 9,0105 9,1084 10,1245
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate zinc chromates including zinc potassium chromate zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc	M 564,04 361,93 305,82 181,4 179,45	seuil converti 2,8978 4,5161 5,3446 9,0105
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate zinc chromates including zinc potassium chromate zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2]	M 564,04 361,93 305,82 181,4 179,45	seuil converti 2,8978 4,5161 5,3446 9,0105 9,1084 10,1245 11,9928
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate zinc chromates including zinc potassium chromate zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2]	M 564,04 361,93 305,82 181,4 179,45	seuil converti 2,8978 4,5161 5,3446 9,0105 9,1084 10,1245
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate zinc chromates including zinc potassium chromate zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc chloride	M 564,04 361,93 305,82 181,4 179,45 161,44 136,29	seuil converti 2,8978 4,5161 5,3446 9,0105 9,1084 10,1245 11,9928
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate zinc chromates including zinc potassium chromate zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc chloride	M 564,04 361,93 305,82 181,4 179,45 161,44 136,29	seuil converti 2,8978 4,5161 5,3446 9,0105 9,1084 10,1245 11,9928 seuil converti
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate zinc chromates including zinc potassium chromate zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc chloride HP 6-J ziram (ISO); zinc bis dimethyldithiocarbamate	M 564,04 361,93 305,82 181,4 179,45 161,44 136,29	seuil converti 2,8978 4,5161 5,3446 9,0105 9,1084 10,1245 11,9928 seuil converti
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate zinc chromates including zinc potassium chromate zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc chloride	M 564,04 361,93 305,82 181,4 179,45 161,44 136,29	seuil converti 2,8978 4,5161 5,3446 9,0105 9,1084 10,1245 11,9928 seuil converti 0,1069
HP 6-D bis(3,5-di-tert-butylsalicylato-O 1,O 2)zinc zinc bis(diethyldithiocarbamate) ziram (ISO); zinc bis dimethyldithiocarbamate zinc chromates including zinc potassium chromate zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc sulphate (hydrous) (mono-, hexa- and hepta hydrate); [1] zinc sulphate (anhydrous) [2] zinc chloride HP 6-J ziram (ISO); zinc bis dimethyldithiocarbamate	M 564,04 361,93 305,82 181,4 179,45 161,44 136,29 M 305,82	seuil converti 2,8978 4,5161 5,3446 9,0105 9,1084 10,1245 11,9928 seuil converti 0,1069 seuil

HP 7-A	М	seuil converti
zinc chromates including zinc potassium chromate	181,4	0,0360

		seuil
HP 8-A	M	converti
zinc chloride	136,29	2,3986
dimethylzinc; [1] diethylzinc [2]	123,51	2,6467
dimethylzinc; [1] diethylzinc [2]	95,46	3,4245

		seuil
HP 10-B	M	converti
mancozeb (ISO); manganese ethylenebis(dithiocarbamate)		
(polymeric) complex with zinc salt	271,3	0,7230

		seuil
HP 13-A	М	converti
zinc bis(dibutyldithiocarbamate)	474,14	1,3789
zinc bis(diethyldithiocarbamate)	361,93	1,8064
ziram (ISO); zinc bis dimethyldithiocarbamate	305,82	2,1379
propineb (ISO); polymeric zinc propylenebis(dithiocarbamate)	289,8	2,2560
zineb (ISO); zinc ethylenebis(dithiocarbamate) (polymeric)	275,75	2,3710
mancozeb (ISO); manganese ethylenebis(dithiocarbamate)		
(polymeric) complex with zinc salt	271,3	2,4099
zinc chromates including zinc potassium chromate	181,4	3,6042

maîtriser le risque | pour un développement durable |

Institut national de l'environnement industriel et des risques

Parc Technologique Alata BP 2 - 60550 Verneuil-en-Halatte

Tél.: +33 (0)3 44 55 66 77 - Fax: +33 (0)3 44 55 66 99

E-mail: ineris@ineris.fr - **Internet**: http://www.ineris.fr