

Direction territoriale Méditerranée

Fondamentaux de la conception Révision des fondamentaux en matière de visibilité

Journée technique du 16 mars 2017

Pourquoi réviser les règles de visibilité ?

- Réviser les paramètres fondamentaux en matière de visibilité
- Actualiser les différentes règles de visibilité
- Homogénéiser les divers référentiels

Objet et statut du guide

- Un guide technique
- Fournissant des recommandations en matière de visibilité.
 - ... se substituant à celles données dans les guides et instructions en matière d'aménagement et de conception de la voirie
 - une circulaire ministérielle modifiera les instructions en vigueur pour les services de l'Etat.

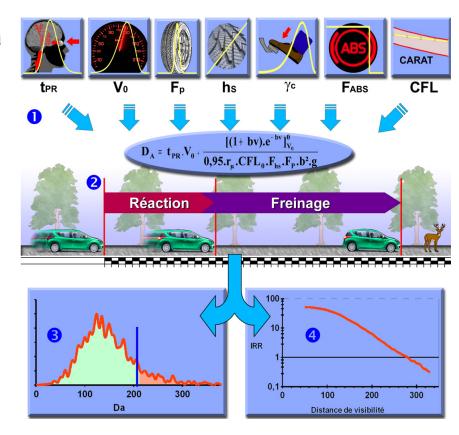
Contenu du guide

- L'ensemble des règles en matière de visibilité pour les routes principales urbaines ou non urbaines
- Des éléments de méthode pour vérifier les règles de visibilité
 - démarche toute aussi importante que les règles elles-mêmes ;
 - … et incontournable pour pouvoir mobiliser les souplesses…

Principes adoptés

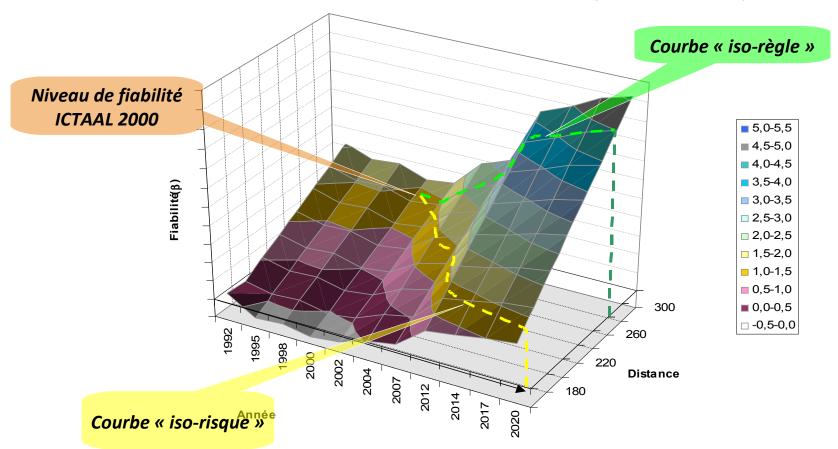
- Intégration des résultats des études récentes (Cerema)
- Traitement uniforme de la visibilité dans l'ensemble des référentiels : lctaal, VSA, ARP, 2x1 voies, échangeurs...
- Révision / toilettage de l'ensemble des règles
- Une formulation et des concepts similaires à ceux pré-existants
- De l'importance du processus de vérification
- L'introduction de souplesses « conditionnelles »

Les bases de la révision


- Etude sur la distance d'arrêt (Cerema ; 2014)
 - basée sur des travaux de recherche (Serres/Risques routiers)
 - changement d'approche : probabiliste versus déterministe => utilisation de méthodes statistiques : simulation de Monte-Carlo, loi de survie (structure du parc /ABS) etc.
 - mise à jour des connaissances sur les paramètres influant sur la distance d'arrêt.
- Analyse des hauteurs conventionnelles (Cerema, 2016)
 - Hauteur de point observé et hauteur de l'observateur
- Analyses complémentaires au sein d'un GT Cerema, pour étendre l'actualisation à d'autres paramètres :
 - Visibilité sur entrée, sortie...

Révision des règles de visibilité

Distances d'arrêt L'approche probabiliste (1/2)


- Un modèle pour la distance d'arrêt constitué à partir:
 - de la littérature + bases de données
- Une distribution réaliste des distances d'arrêt
 - par une simulation de Monte-Carlo.
- Originalité : prise en compte des facteurs limitants, liés à l'aptitude du conducteur et à l'adhérence mobilisable.
- Validité : confrontation modèle / mesures en vraie grandeur
- Souplesse d'utilisation (paramétrage ad. lib.)

Distances d'arrêt L'approche probabiliste (2/2)

Évaluation prospective et rétrospective (1990 - 2020)

Modulation et souplesses

- Introduction de davantage de souplesse
 - souplesses mieux structurées et aux modalités d'utilisation précisées
- Modulation = changer le niveau visé selon l'enjeu
- Souplesse = c'est relâcher la règle pour répondre aux nécessités d'optimisation des projets
 - Trouver un meilleure rentabilité économique
 - Responsabiliser le concepteur (choix des caractéristiques du projet)
 - condition : vérification des conditions de visibilité dans un processus de conception intégrée (ce n'est pas au contrôle extérieur de vérifier in fine le niveau de visibilité offert!)
- Souplesses, ce n'est pas :
 - minimiser le nombre d'écarts formels
 - considérer que la visibilité est la seule variable d'ajustement des projets

Principales évolutions

- Révision des paramètres fondamentaux
 - Décélération admissible (Da) : $\delta = 0.41$ g constant (vs = 0.32 à 0.46 g)
 - Malus en courbe $m_c = f(R)$: progressif de 0 à 20 % (vs 25 % ou 0 %)
 - Temps de perception-réaction : 1,8 s (vs 2,0 s)
 - Distance de manœuvre en sortie : d_{ms} = 3 s sur voie de droite (sortie en déboitement) vs 6 s (autres cas : pas de modification)
 - Hauteur du point d'observation : 1,10 m (vs 1,00 m)
 - Hauteur du point observé (selon la cible): 0,70 m (vs 0,60 ou 1,00)
- Distance de visibilité sur entrée : basée sur calcul cinématique
- Modulation du niveau de performance selon l'enjeu de sécurité
- Souplesses (ajoutées ou homogénéisées)

Distance de visibilité sur obstacle (résumé)

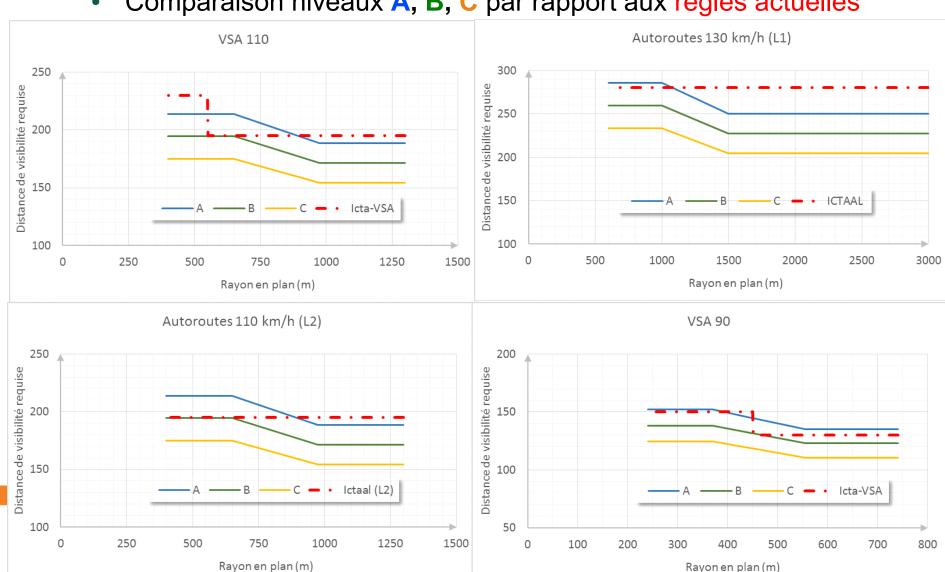
Basée sur la distance d'arrêt :

Malus en courbe

une seule formule intégrant tous les paramètres

$$d_{a} = (T_{PR}.v + (1 + m_{c(R)}) \frac{v^{2}}{2g(\gamma + p)})K(N_{PV})$$

Modulation de D_a selon enjeux (N_{PV} A ou B)

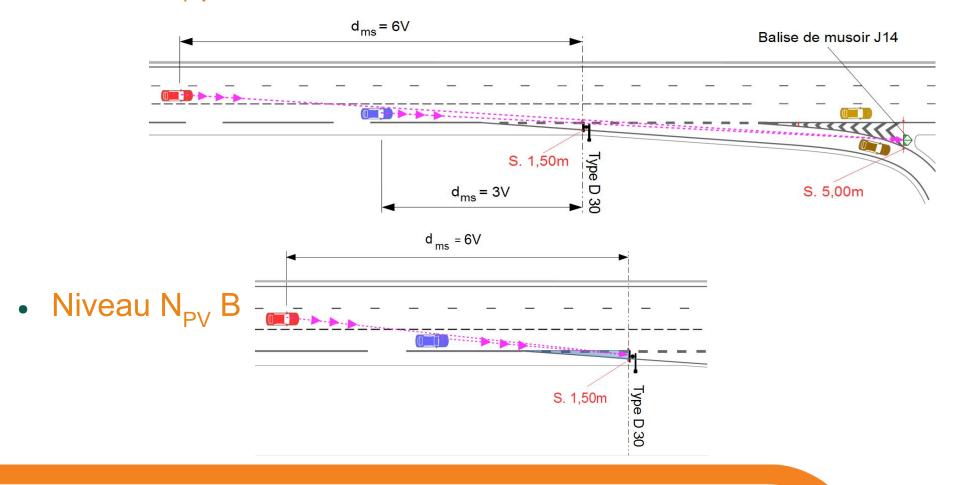

Niveau de performance

- N_{PV} A en approche immédiate de points singuliers, B sinon.
- Souplesse donnée si forte contrainte ET optimisation
 - souplesse 1 : abaissement de 1 niveau N_{PV} (soit -10%)
 - souplesse 2 : cas des courbes à gauche de routes à 2 chaussées : hauteur de cible prise en compte = 0,85 m.(donne svt la visibilité au-dessus d'une DBA)
 - souplesse 3 : distance d'évitement (conditions de mise en œuvre à consolider)

Distances d'arrêt

Comparaison niveaux A, B, C par rapport aux règles actuelles

Distance de visibilité sur sortie


 Principe : visibilité sur la signalisation directionnelle ET co-visibilité (signalisation / géométrie)

- Visibilité de la SD (D30, D40, D50) à L_c
- Co-visibilité D30 et J14 à la d_{ms}
- Souplesse (pour sortie en déboitement)
 - co-visibilité D30 / biseau à la d_{ms}
- Distance de manœuvre en sortie d_{ms}
 - = 3 s, voie de droite, sortie en déboîtement
 - = 6 s sinon

Sortie: la co-visibilité

Niveau N_{PV} A

Règles incluses dans le guide

- Dispositions conventionnelles
- Visibilité sur obstacle
- Visibilité sur virage
- Visibilité sur/en carrefour plan (ordinaire, giratoire, feu, traversée piéton)
- Visibilité sur/dans les échangeurs (entrée, sortie, bretelles)
- Visibilité sur des points particuliers (refuges, accès de service, lit d'arrêt, PSGR...)
- Visibilité pour le dépassement
- Visibilité pour une VRTC

Impact des nouvelles règles Cas de la distance sur obstacle

- Test sur plusieurs projets : comparaisons règles actuelles / nouvelles
 - Test sur un projet ICTAAL/L2, très contraint, déjà « optimisé »
- Sur le niveau de base : un peu moins de déficits
 - 22 vs 24 (-30 % de linéaire)
- Après utilisation des souplesses : bcp moins de déficits
 - 2 déficits (-90 % de linéaire)
- Ecarts différents, mais moins nombreux
 - 2 écarts (180 mètres) vs 7 (1 500 mètres, points singuliers)
 - Cas des courbes à gauche en angle saillant

Points clefs

- Forte continuité avec les règles conventionnelles existantes
- Baisse générale (mais raisonnable) des exigences...
 - notamment dans les situations contraintes
 - en particulier en courbe à gauche
 - et pour les sorties en déboîtement
- ... mais pas systématique : parfois les recommandations sont (un peu) plus fortes (fort enjeux de sécurité routière)
- Pas de règles supplémentaires (outre les VRTC)
- Des « dérogations intégrées » = souplesses
- Diminution forte des déficits de visibilité et des écarts aux règles
- Réduction +/- sensible du coût et impacts des projets

Merci de votre attention