

Valorisation des sédiments fluviaux dans le béton :

Du gisement à la formulation

Pierre Delcour & Amor BEN FRAJ

Journée COTITA - Valorisation des matériaux alternatifs en techniques routières

Champs-sur-Marne 23/06/2015

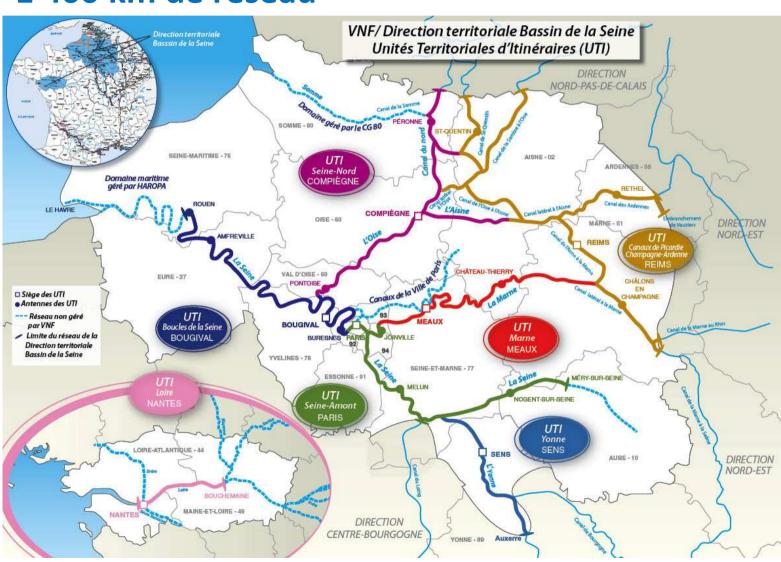
Voies Navigables de France

P. Delcour

Établissement public sous tutelle du MEDDE;

En quelques chiffres :

- > 6700 km de canaux et rivières aménagés,
- > 3000 ouvrages d'art (écluses, barrages...),
- > 40 000 hectares de domaine public fluvial,
- > Env. 600 000 m3 de sédiments dragués par an


7 Directions territoriales

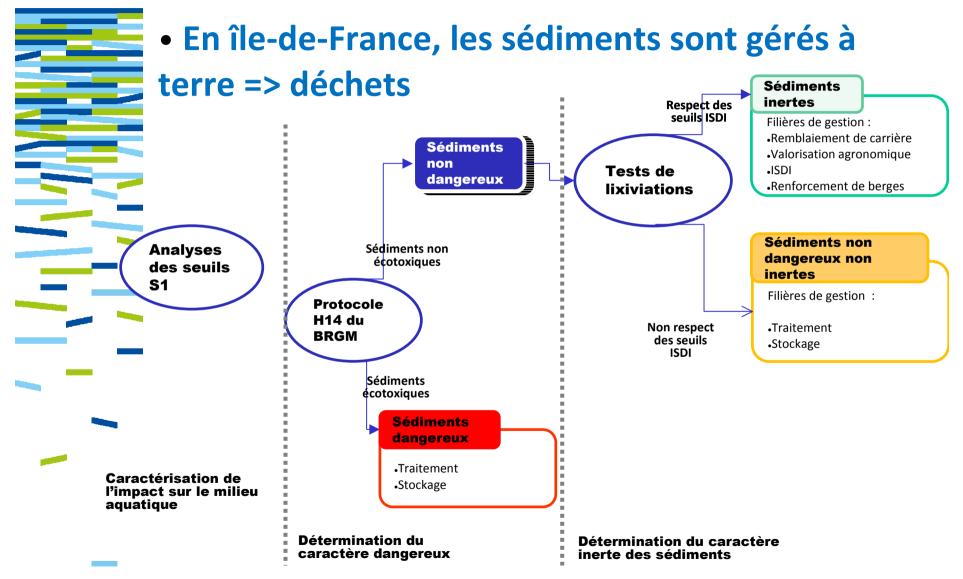
Contexte de la DTBS

P. Delcour

• 1 400 km de réseau

vnf Gestion des opérations de dragage

P. Delcour

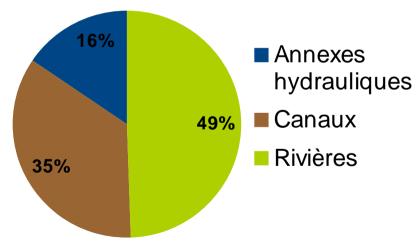

 Dragage d'entretien autorisé par la loi sur l'eau dans le cadre de Plan de Gestion Pluriannuels des Opérations de Dragage (PGPOD)

• Les sédiments sont des déchets dès lors qu'ils sont sortis de l'eau.

Qualité des sédiments

P. Delcour

Dragage d'entretien à la DTBS


P. Delcour

→2/3 les rivières, 1/3 sur les canaux (bief et annexes hydrauliques)

• 200 000 m³ de sédiments dragués / an

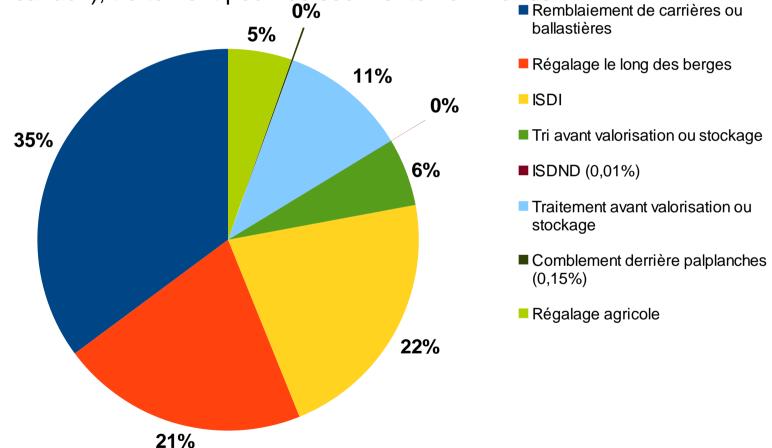
→55 000 m³ dragués en Île-de-France (90 % sur les rivières)

Qualité des sédiments

P. Delcour

- Des sédiments essentiellement inertes :
- Lorsque des pollutions sont rencontrées :
 - → Hydrocarbures, parfois antimoine lixiviable

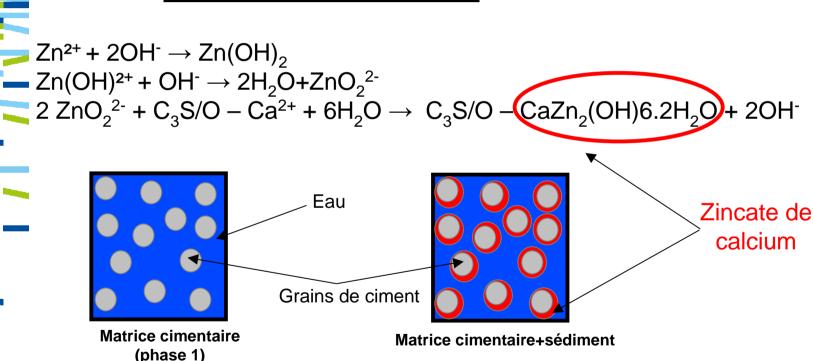
- Sur les rivières sédiments très sableux et caillouteux :
 - → de 60 à 80 % de granulométrie > à 50 µm
 - → présence régulière de coquillages



Gestion des sédiments de la DTBS

P. Delcour

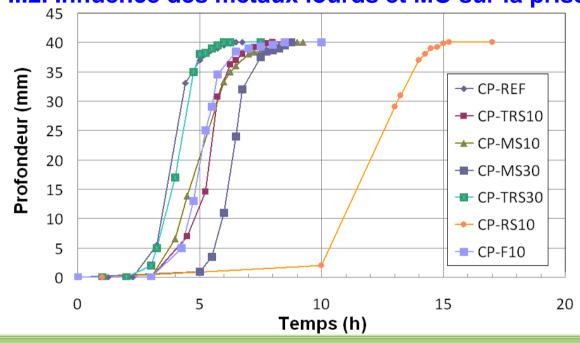
Pour les sédiments franciliens : Remblaiement de ballastières pour les sédiments inertes des rivières (valorisation agricole pour ceux des canaux), traitement pour les sédiments non inertes • Remblaiement de carrières ou



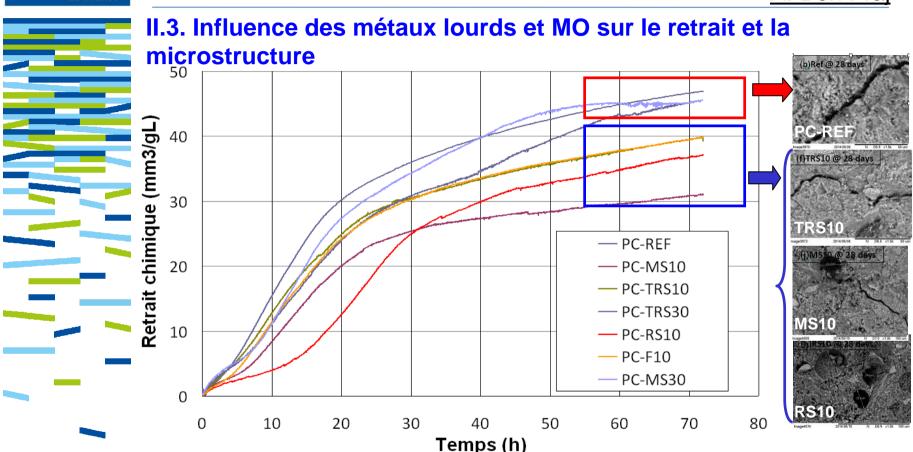
Compatibilité sédiments fins/ matrice cimentaire

II.1. Influence des métaux lourds sur l'hydratation du ciment

Retardateurs/ accélérateurs



La formation de zincate de calcium sur la surface de C₃S l'isole de l'eau et joue ainsi le rôle d'une membrane qui retarde l'hydratation



- La référence contient plus de ciment anhydre : début et fin de prise rapides
- Les Filler et sédiments fluviaux traités (TRS) ont un peu de retard de prise, comparés à la référence : activité supérieure aux autres sédiments
- A 30 %, les sédiments marins, MS, accusent du retard à cause de la matière organique : phénomène de « recouvrement »

Les sédiments fluviaux (RS) sont très pollués (riches en MO et traces de métaux lourds) → membrane protectrice : retard de début et fin de prise

- La substitution du ciment par 10 % de sédiments fluviaux traités (TRS) améliore la compacité de l'échantillon et diminue son retrait : sédiments propres et fins
- La substitution du ciment par 10 % de sédiments marins (MS) semble favoriser l'apparition de fissures « localisées » : présence de la MO
- La substitution du ciment par 10 % de sédiments fluviaux non traités (RS) crée une multitude de « fissures » localisées autour des impuretés présentes dans le matériau

II.4.1. Mécanismes de stabilisation

Sorption – incorporation chimique – micro/macro encapsulation (Chen et al., 2007 et Glasser, 1997)

- Piégeage mécanique : les métaux agissent comme centre de nucléation des hydrates (Murat et Sadok, 1990 ; Roy et al., 1992)
- La précipitation en hydroxydes, carbonates, silicates et sulfates
- L'adsorption sur les C-S-H : un phénomène réversible qui dépend du PH et de la surface spécifique des C-S-H
- La substitution dans la structure des hydrates : Ca/Cu ; Ca/Mg ;
 Ca/Zn

L'espèce la plus active en stabilisation des métaux est le gel des C-S-H. Les sulfoaluminates et les aluminates de calcium pourraient également jouer un rôle non négligeable (Giergiczny et Krol, 2008)

II.4. Stabilisation des métaux lourds par la matrice

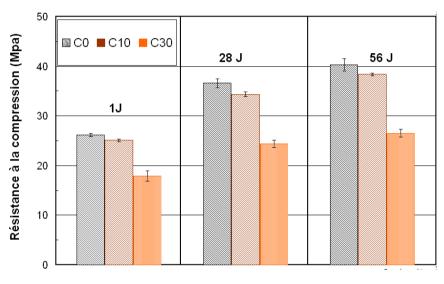
II.4.2. lixiviation

Il s'agit d'un phénomène majoritairement contrôlé par la diffusion (Voglar et Lestan, 2010).

Fabrication d'une pâte de ciment: CEM I 52.5 R; E/C = 0.35

	Cd	Ni	Cu	Cr
[CO]	>2xN2*	>2xN2*	>2xN2*	>2xN2*
[C-lixi] (µg/l)	< 0,2	< 4	< 5	< 2

^{*} Seuil établi par le groupe Geode



- L'absence de traces dans le lixiviat (essai sur monolithe ou broyat)
 nous laisse penser que le piégeage est plutôt chimique
- Malgré les fortes concentrations de métaux lourds, pour un taux de substitution de ciment, en sédiment, équivalent à 10 et 30 %, la fixation est ≈ de 100 %

Une substitution à 10 % du ciment par des sédiments ne diminue que de 2 Mpa la résistance à la compression;
A 30%, l'effet des sédiments sur la résistance à la compression est très remarquable

- Le béton C10 se carbonate plus rapidement que le C0 : plus riche en CaCO_{3:}
- Le traitement thermique augmente la porosité de l'échantillon ainsi que sa profondeur de carbonatation.

CONCLUSIONS

- Rareté des ressources minérales et un besoin grandissant en matériaux en île de France;
- Un volume annuel dragué de 55 000 m³ en région île de France;
- Une gestion « assimilée » à de la valorisation...mais proche du stockage

Une substitution à 10 % du ciment par des sédiments semble être optimale : quantité non négligeable à valoriser sans pour autant affecter les propriétés de la matrice cimentaire (voire les améliorer)

La présence des traces de métaux lourds et de la matière organique a un effet direct sur l'hydratation : pour des taux de substitution faibles cet effet paraît négligeable

Une valorisation des sédiments fins dans les matériaux cimentaires est possible, à condition qu'ils soient propres et que leur taux ne dépasse pas 10 %. Leur légère activité permet de les utiliser au moins comme filler

MERCI DE VOTRE ATTENTION

pierre.delcour@vnf.fr

amor.ben-fraj@cerema.fr

