

Opération Cadoroc Journée de restitution

Aix en Provence 10 octobre 2017

Jean-François Serratrice

Photo CETE Méditerranée

- L'eau dans les massifs rocheux
- Problématique au laboratoire
- Un programme expérimental

L'eau est présente dans les massifs rocheux

• Failles, cavités, discontinuités, pores, ...

- Elle y est conservée ou en mouvement
- Ses fluctuations sont liées aux conditions environnementales et facteurs entropiques A toutes les échelles de temps et d'espace

Ses effets sont multiples

Mécaniques

Effets mécaniques étudiés ici

- Thermiques
- Agent de diffusion, de dissolution et d'altération
- Erosion, colmatage
- Gel, etc.

Site du Pont du Gard

Photos CETE Méditerranée

 S_0

La karstification se développe dans la structure du massif urgonien, ici la stratification S_0

 S_0

RD

france3-regions.francetvinfo.fr

La Salle en Beaumont (Isère) 08/01/1994

"Le paramètre déclenchant semble de toute évidence l'accumulation d'eau fissurale [dans les calcaires en aval pendage] faisant remonter la charge hydraulique et créant des pressions insupportables par les niveaux argileux de couverture, pouvant aller jusqu'au soulèvement, puis au glissement."

Document pluiesextremes.meteo.fr

Document azurelive.com

Barrage de Malpasset 02/12/1959

D'après Maurenbrecher (2009)

Au laboratoire

✓ Dans les roches (tendres) fissurées

Qui cassent préférentiellement sur des discontinuités naturelles

Le rôle mécanique de l'eau se trouve à la croisée de deux questions

Eprouvette triaxiale (diamètre 100 mm)

- La mesure des propriétés de résistance Résistance de pic, résistance résiduelle, dilatance
- Le découplage entre les interactions "effectives" et la "pression interstitielle" dans les discontinuités

Indépendamment du rôle de la pression interstitielle dans la matrice poreuse

Au laboratoire

Exemple d'une marne fissurée gonflante \checkmark

Essais triaxiaux CD HP

01 03 TET 01

Eprouvette fissurée

Essai triaxial à haute pression, éprouvettes après essai (diamètre 50 mm)

L'interprétation des essais triaxiaux doit être effectuée dans le plan (σ , τ) où σ est contrainte normale et τ la contrainte de cisaillement sur le plan de la discontinuité de pente β_0

Comportement des roches tendres fissurées

Marne fissurée gonflante Essais triaxiaux CD HP

Programme expérimental prospectif

Problématique

- Contribution à l'étude des mécanismes de déclenchement des instabilités sous l'effet de l'eau
- Amélioration de l'interprétation des essais triaxiaux dans les sols indurés et les roches tendres

Objectifs

- Mesure les propriétés de cisaillement des discontinuités
- En condition de faible confinement
- Avec prise en compte du rôle mécanique de l'eau

Tendances du moment dans la littérature

 Programmes expérimentaux au laboratoire sur la base d'essais triaxiaux et d'éprouvettes pré-découpées

Programme expérimental prospectif

Essais triaxiaux

- Mécanismes de surface Très faibles confinements et très faible raideur
- Une seule discontinuité
- Roche résistante (épontes non friables)
- Pression "interstitielle" contrôlée
- Dégradation des épontes

Perspectives

- Remplissage argileux
- Réseau de discontinuités
- Hautes pressions (eau)
- Etat "contrôlé" des épontes
- Etc.

Eprouvette triaxiale (diamètre 50 mm)

Essais triaxiaux Eprouvettes ✓ Eprouvettes pré-découpées (calcaire blanc)

Eprouvettes triaxiales prédécoupées, diamètres 50 mm

Calcaire urgonien, La Mède (Bouches du Rhône)

tête triaxiale

discontinuité prédécoupée $\beta_0 = 58^\circ$

éprouvette

drain latéral

- mèche de géotextile

- rainures le long de

quatre génératrices

embase triaxiale

Programme d'essais triaxiaux

Chargements monotones

- Condition drainée
- Condition non drainée
- Mesure des propriétés de résistance

Résistance de pic, seuil, dilatance

✓ Chargements à u croissante

• Simulation des déclenchements Type La Salle en Beaumont

Le chargement est réalisé en injectant de l'eau dans la discontinuité

• Les charges statiques sont maintenues (le confinement et les cisaillements)

• La pression d'eau u est augmentée progressivement jusqu'à la rupture le long de la discontinuité

Essais triaxiaux monotones CD ✓ Effet du confinement

Essais triaxiaux monotones CD ✓ Effet du confinement

Réponses observées

Essais triaxiaux monotones CD et CU

- o Un seuil en-dessous duquel le cisaillement est quasi bloqué
- Ce seuil entre dans l'intervalle des deux paraboles du plan (σ' , τ)
- Puis le glissement progresse par blocage-glissement
- Avec des amplitudes qui dépendent du confinement et un accroissement continu de l'effort de cisaillement
- Les mesures de la pression interstitielle témoignent de ces à-coups
- Avec des pics qui augmentent avec la contre-pression (réactivité en lien avec la compressibilité de l'eau)
- Une forte dilatance se mobilise dans ce domaine
- Les chargements aboutissent sur l'enveloppe maximale indiquée par les essais triaxiaux CD

Calcaire blanc $\beta_0 = 58^{\circ}$ Epontes brutes de sciage

Calcaire blanc $\beta_0 = 58^{\circ}$ Epontes brutes de sciage

Courbes (ϵ , τ)

Courbes (σ , τ)

Calcaire blanc $\beta_0 = 45$ et 58 ° Epontes brutes de sciage

Calcaire blanc $\beta_0 = 45^{\circ}$ Epontes séparées par deux feuilles de plastique

Calcaire blanc $\beta_0 = 34^{\circ}$ Epontes séparées par deux feuilles de plastique

Calcaire blanc $\beta_0 = 34^{\circ}$ Epontes séparées par deux feuilles de plastique

Réponses observées

Essais triaxiaux à u croissante

- O Un seuil de pression u en-dessous duquel le cisaillement est quasi bloqué
- Le cisaillement se manifeste alors par des sauts successifs dans un mécanisme de blocage-glissement
- $\circ\,$ Les chemins des contraintes effectives ($\sigma',\,\tau)$ sont courbes et décroissants
- Ils sont encadrés par deux arcs de parabole d'exposant 0,75
- Ils aboutissent à l'origine du plan (σ', τ)
 en relation avec l'angle $β_0$
- L'initiation des glissements pendant les chargements monotones en compression tombe dans cet intervalle
- Il n'apparaît pas d'instabilité au cours des différents types de chargements
- o L'effet de la dilatance est moins marqué

Réponses observées

Essais triaxiaux monotones et u croissante

- A basse pression, l'enveloppe de rupture est courbe
- Il existe un domaine des seuils dans lequel le cisaillement s'effectue par sauts
- Il ne s'agit pas du déclenchement de la rupture mais les cisaillements sont irréversibles
- La résistance au cisaillement des épontes recouvertes de films de plastique est à peu près égale à la moitié de la résistance des épontes brutes de sciage
- o L'effet de la dilatance est annulé
- o Le mécanisme de blocage-glissement disparaît
- o L'interprétation en (σ , τ) s'impose dans tous les cas

Conclusion

Programme expérimental prospectif

- Essais triaxiaux à faible confinement
- Eprouvettes pré-découpées (roche dure)
- Divers modes de chargement
 - monotones drainés et non drainés
 - à pression interstitielle croissante

Comportement observé

• Après un seuil, les cisaillements se manifestent par des sauts successifs

- Les chargements sont poussés jusqu'à la rupture
- Mais il n'apparaît pas d'instabilité (rupture progressive)
- L'injection de l'eau dans la discontinuité semble effacer le rôle de la dilatance

Fin